1. Regelskis K., Račiukaitis G., & Gedvilas M. Ripple formation in the chromium thin film during laser ablation. Applied Surface Science. 2007.253, №15. Р.6584-6587. https://doi:10.1016/j.apsusc.2007.01.048.
https://doi.org/10.1016/j.apsusc.2007.01.048
2. Rauf A., Ahmed K., Nasim F., Khan A. N., & Gul, A. Optical and structural properties of Cr and Ag thin films deposited on glass substrate. IOP Conference Series: Materials Science and Engineering, 2016.146. 012013. https://doi.org/10.1088/1757-899x/ 146/1/012013.
https://doi.org/10.1088/1757-899X/146/1/012013
3. Lei L., Liang L., Liu L., Shen Y., Guan Y., Zhang Y., Zou W., Guo C., & Fu Y. A study on length traceability and diffraction efficiency of chromium gratings. Photonics. 2024.11, №3. Р.233. https://doi.org/10.3390/photonics11030233.
https://doi.org/10.3390/photonics11030233
4. Huang Y., Yang Y., Liang J., Miao Z., Zhao M., & Zheng, Y. An optical glass plane angle measuring system with photoelectric autocollimator. Nanotechnology and Precision Engineering. 2019.2, №2. Р. 71-76. https://doi.org/10.1016/j.npe.2019.06.001.
https://doi.org/10.1016/j.npe.2019.06.001
5. Wavrunek T., Ball S., Gotto Z., & White B. An Adhesion-based Alternative to Solvent Processing in Microfabrication. Proceedings of The National Conference On Undergraduate Research (NCUR) Montana State University.2020. https://libjournals. unca.edu/ncur/wp-content/uploads/2021/01/3238-Trevor-Wavrunek-FINAL.pdf.
6. Hossain N., Justice J., Lovera P., McCarthy B., O'Riordan A., & Corbett B. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask. Nanotechnology.2014.25, №35. Р.355301. https://doi.org/10.1088/0957-4484/25/35/ 355301.
https://doi.org/10.1088/0957-4484/25/35/355301
7. Lee S.H., Seo S.E., Kim K.H., Lee J., Park C.S., Jun B.-H., Park S. J., & Kwon O.S. Single Photomask lithography for shape modulation of micropatterns. Journal of Industrial and Engineering Chemistry. 2020. 84. Р.196-201. https://doi.org/10.1016/j.jiec. 2019.12.034.
https://doi.org/10.1016/j.jiec.2019.12.034
8. Atthi N. & Jeamsaksiri W., Aramphongphun Ch., & Jantawong J., Hruanun Ch. Poyai, A. The Influence of Chromium Film Thickness on Photomask on Light Transmission for 3D-Lithography Application. Conference:German-Thai Symposium on Nanoscience and Nanotechnology (GTSNN-2007). https://www.researchgate.net/ publication.
9. Ekinci H., Soltani M., Jahed M.S.N., Zhu Cui X.B., Pushin D. Effect of annealing on the structural, optical and surface properties of chromium oxide (Cr 2 O 3 ) thin films deposited by e-beam evaporation for plasma etching applications. Journal of Alloys and Compounds. 2021. 875. Р.160087. ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021. 160087.
https://doi.org/10.1016/j.jallcom.2021.160087
10. Aydinoglu F., Saffih F., Dey R., & Cui B. Chromium oxide as a hard mask material better than metallic chromium. Journal of Vacuum Science & Technology B Nanotechnology and Microelectronics Materials Processing Measurement and Phenomena.2017. 35, №6. https://doi.org/10.1116/1.4998480.
https://doi.org/10.1116/1.4998480
11. Dey R., Ekinci H., & Cui B. Effects of mask material conductivity on lateral undercut etching in silicon nano-pillar fabrication. Journal of Vacuum Science & Technology B Nanotechnology and Microelectronics Materials Processing Measurement and Phenomena. 2020. 38, №1. https://doi.org/10.1116/1. 5123601.
https://doi.org/10.1116/1.5123601
12. Dan L. Schurz, Warren W. Flack, and Makoto Nakamura. High-optical-density photomasks for large exposure applications. Proc. SPIE 4186, 20th Annual BACUS Symposium on Photomask Technology. 22 January 2001; https://doi.org/10.1117/12.410770.
https://doi.org/10.1117/12.410770
13. Sahu V., Dewangan P., Vardhan R.V. et al. A study on chromium thin film with positive photoresist as a masking layer towards the wet bulk micromachining of Borofloat glass. Micro and Nano Syst. Lett. 2024.12, №12. https://doi.org/10.1186/s40486-024-00201-5.
https://doi.org/10.1186/s40486-024-00201-5
14. Schurz D. L., Flack W. W., & Nakamura M. High-optical-density photomasks for large exposure applications. SPIE Proceedings. 2001.4186.869. https://doi.org/10.1117/12. 410770.
https://doi.org/10.1117/12.410770
15. Glenn S. Chrome Photomask specifications. JD Photo Data. 2019. https://www.jd-photodata.co.uk/chrome-photomask-specifications.
16. Tranca D. E., Sobetkii A., Hristu R., Anton S. R., Stanciu S. G., Fiorentis E., Vasile E., Banica C. K., & Stanciu G. A. Mechanical and optical investigations of CR thin films deposited on si substrate. 2023. 23rd International Conference on Transparent Optical Networks (ICTON). Р.1-4. https://doi.org/10.1109/icton59386.2023.10207526.
https://doi.org/10.1109/ICTON59386.2023.10207526
17. Lozanova V., Lalova A., Soserov L., & Todorov R. Optical and electrical properties of very thin chromium films for optoelectronic devices. Journal of Physics: Conference Series. 2014.514.012003. https://doi.org/10.1088/1742-6596/514/1/012003.
https://doi.org/10.1088/1742-6596/514/1/012003
18. Katrova V., Atanasova A., Hristova-Vasileva T., & Todorov R. Application of cold clusters as a template for control of the columnar microstructure of thin silver films and their plasmonic properties. Frontiers in Optics / Laser Science. 2020. https://doi.org/10. 1364/fio.2020.jth4a.27.
https://doi.org/10.1364/FIO.2020.JTh4A.27
19. Gedvilas M., Voisiat B., Regelskis K., Raciukaitis G. Impact of capillarity forces on the steady-state self-organization in the thin chromium film on glass under laser irradiation. Thin Solid Films. 2014.571. DOI: 10.1016/j.tsf.2014.09.047.
https://doi.org/10.1016/j.tsf.2014.09.047
20. Ferreira A. A., Silva F. J., Pinto A. G., & Sousa V. F. Characterization of thin chromium coatings produced by PVD sputtering for optical applications. Coatings. 2021. 11, №2. Р.215. https://doi.org/10.3390/coatings11020215.
https://doi.org/10.3390/coatings11020215
21. Alkhazali A., Hamasha S., Hamasha M. M., Khaled H., & Massadeh R. Crack development and electrical degradation in chromium thin films under tensile stress on pet substrates. Coatings. 2024. 14, №11. Р. 1403. https://doi.org/10.3390/coatings14111403.
https://doi.org/10.3390/coatings14111403
22. Ivanova T., Surtchev M., & Gesheva K. Characterization of cvd chromium oxide thin films. Physica Status Solidi (A). 2001.184, №2. Р. 507-513. https://doi.org/10.1002/1521-396X(200104)184:2%3C507::AID-PSSA507%3E3.0.CO;2-O.
https://doi.org/10.1002/1521-396X(200104)184:2<507::AID-PSSA507>3.0.CO;2-O
23. Kariper I.A. Synthesis and characterization of CRSE thin film produced via Chemical Bath Deposition. Optical Review. 2017. 24, №2. Р.139-146. https://doi.org/10. 1007/s10043-017-0307-1.
https://doi.org/10.1007/s10043-017-0307-1
24. Hsia L.C. Applications of optical properties of sputtered chromium thin films in Photomask making. Journal of The Electrochemical Society. 1984. 131, №9. Р. 2133-2137. https://doi.org/10.1149/1.2116034.
https://doi.org/10.1149/1.2116034
25. Kostelak R. Analysis of "Thin chrome" on photomasks. Bay Area Chrome Users Society Symposium. 2023.7. https://doi.org/10.1117/12.3011918.
https://doi.org/10.1117/12.3011918
26. Garratt E., AlFaify S., Yoshitake T., Katamune Y., Bowden M., Nandasiri M., Ghantasala M., Mancini D. C., Thevuthasan S., & Kayani A. Effect of chromium underlayer on the properties of nano-crystalline diamond films. Applied Physics Letter. 2013. 102, №1. https://doi.org/10.1063/1.4774086.
https://doi.org/10.1063/1.4774086
27. Algirdas L., & Viktoras G. Float glass surface preparation methods for improved chromium film adhesive bonding | glassonweb.com. Glass on Web. 2013. https://www.glassonweb.com/article/float-glass-surface-preparation-methods-improved-chromium-film-adhesive-bonding .