https://doi.org/10.15407/iopt.2024.59.109

Optoelectron. Semicond. Tech. 59, 109-117 (2024)

E.F Venger, V.Morozhenko 


POLARIZATION EFFECT OF ONE-DIMENSIONAL SEMICONDUCTOR MAGNETOPHOTONIC STRUCTURES ON UNPOLARIZED LIGHT


In the paper, the polarization characteristics of light reflected from and transmitted through a one-dimensional magnetophotonic structure (MPS) have been theoretically and experimentally investigated. Attention has been paid to the one-dimensional MPSs with isotropic in a zero magnetic field magneto-optic medium inside. Attention has been paid to one-dimensional MPSs with an isotropic inside in zero magnetic field magnetooptical medium. The theoretical approach used the Jones vector formalism, as well as multi-beam summation, taking into account both the phase difference and the Faraday rotation of the electric vectors of light propagating in the MPS volume. It has been established that unpolarized light, after passing through a placed in an external magnetic field MPS or being reflected from it, acquires circular polarization. The theoretical consideration of the interaction of light with an MPS in a magnetic field explains this effect by the fact that the transmitted or reflected light decomposes into two circularly polarized components with opposite rotation directions and non-coinciding spectral distributions.

The dependence of the polarization degree of the transmitted and reflected light on the magnetic field and wavelength has been investigated. It has been found that the spectral dependence of the degree of polarization has a cyclic sign-variable character. The polarization degree reaches its absolute maximum when the interference extrema of the components are in antiphase.

For experimental studies, n-type InAs semiconductor plates were used as MPS. Their wide faces were polished and served as mirrors. The studies were carried out in the mid- and far-infrared wavelength range, corresponding to the Faraday effect on free charge carriers. The obtained experimental results are in good agreement with the theoretical ones.

It is shown that the analysis of the relative shift of the spectral distributions of the light components that have passed through the MPS in the magnetic field or been reflected from it makes it possible to determine the value of the Faraday angle.

The research results can be used to create devices for controlling the light parameters of the thermal spectral range and to develop the new magnetically controlled polarization devices.


Keywords: magnetophotonic structures, transmission, reflection, polarization, Faraday effect, magnetically controlled optical devices.

References

1. Ogawa D., Nishimura T.,  Nishina Y., Sano K. A magnetically responsive photonic crystal of graphene oxide nanosheets. Nanoscale. 2024. 16. Р. 7908-7915. https://doi.org/10.1039/D4NR00096J.

2. Li J., Li G., Lu X., Wang S., Leng M.,  Yang S., Guan J., Long Y. Magnetically Responsive Optical Modulation: from Anisotropic Nanostructures to Emerging Applications. Adv. Funct. Mater. 34. 2024. Р. 2308293. https://doi.org/10.1002/adfm.202308293.

3. Shuying Y., Rongmin D., Ranran M., Mengyi W., Pei C.,  Yajie Z.,  Aoli Y., Linjun Y.,  Deli X. Recent advances in magnetically responsive photonic crystals assembled by anisotropic building blocks: Synthesis, challenges and outstanding applications. J. Magn. Magn. Mater. 2023. 585. Р. 171097. https://doi.org/10.1016/j.jmmm.2023.171097.

4. Li T.,  Liu G.,  Kong H., Yang G. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2022. 475. P. 214909. https://doi.org/10.1016/j.ccr.2022.214909.

5. Dermeche N., Bouras M., Ahmed K. Magneto-Photonic Crystal Micro-Cavities in One Dimensional Photonic Crystals Fabricated by Sol Gel Process. J. Nanoelectron. Optoelectronics, 2019. 14. P. 1189-1193. DOI:10.1166/jno.2019.2647.

6. Zamani M.,  Hocini A. Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals. J. Magn. Magn. Mater. 2018. 449. P. 435–439. DOI: 10.1016/j.jmmm.2017.10.072.

7. Goyal A. K., Dutta H.S., Pal S.  Recent advances and progress in photonic crystal-based gas sensors. J. Phys. D: Appl. Phys. 2017. 50. P. 203001. DOI:10.1088/1361-6463/aa68d3.

8. Jahani D.,  Soltani-Vala A.,  Barvestani J., Hajian H. Magneto-tunable one-dimensional graphene-based photonic crystal. J. Appl. Phys. 2014. 115. P. 153101. https://doi.org/10.1063/1.4870828.

9. Da H.,  Liang G. Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene. Appl. Phys. Lett. 2011. 98. P. 261915-261915-3. DOI:10.1063/1.3605593.

10. Chung K.H., Kato T., Mito S., H. Takagi H.,  Inoue M. Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators. J. Appl. Phys. 2010. 107. P. 09A930-09A930-1. DOI:10.1063/1.3353020.

11. Li Q., Hu L., Mao Q., Jiang H., Hu Z., Xie K., Wei Z. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals. Opt. Commun. 2018. 410. P. 431–437. DOI:10.1016/j.optcom.2017.10.049.

12. Wen Z., He-ming C., Ke J., Yuyang Z. Vertically magnetic-controlled THz modulator based on 2-D magnetized plasma photonic crystal. Photonics Nanostructures - Fundam. Appl. 2017. 23. P. 28–35. DOI: 10.1016/j.photonics.2016.11.007.

13. Deghdak R., Bouchemat M., Lahoubi M., Pu S., Bouchemat T., Otmani H. Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure. J. Comput. Electron. 2017. 16. P. 392–400. DOI:10.1007/s10825-017-0965-z.

14. Wang Z., Fan S. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 2005. 30. P. 1989–1991. https://doi.org/10.1364/OL.30.001989.

15. Hocini R., Moukhtari D., Khedrouche A., Kahlouche, Zamani M. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix. Opt. Commun. 2017. 384. P. 111–117. https://doi.org/10.1016/j.optcom.2016.10.020.

16. Li J., Tang N., Li T., Luo J., Yao L. Highly sensitive sensors of fluid detection based on magneto-optical Tamm state. Sens. Actuat. 2018. B. 265. P. 644–651. DOI:10.1016/j.snb.2018.02.056.

17. Wu Y.H., Cheng F., Shen Y.C., Lu G.Q., Li L.L. One-way transmission through merging of magnetic defect state and optical Tamm states. Optik. 2016. 127. P. 3740–3744. https://doi.org/10.1016/j.ijleo.2015.12.137.

18. Sun H., Lei Y., Fan S., Zhang Q., Guo H. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometr. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2017. 381. P. 129–135. DOI:10.1016/j.physleta.2016.10.045.

19. Sycz K., Gawlik W., Zachorowski J. Resonant Faraday effect in a Fabry-Perot cavity. Opt. Appl. 2010. XL. P. 633–639.

20. Taskova E., Gateva S., Alipieva E., Kowalski K., Glódź M., Szonert J. Nonlinear Faraday rotation for optical limitation. Appl. Opt. 2004. 43. P. 4178–4181.

21. Ling H.Y. Theoretical investigation of transmission through a Faraday-active Fabry–Perot étalon. J. Opt. Soc. Am. A. 1994. 11. P. 754–758.

22. Morozhenko V., Maslov V., Kachur N. Manifestation of the Faraday effect in non-polarized light under optical resonance conditions. Opt. Comm. 2018. 426. P. 423–426. https://doi.org/10.1016/j.optcom.2018.05.062.

23. Morozhenko V.О., Maslov V.P., Kachur N.V. Determination of Faraday angle in conditions of multiple-beam interference by using transmission and reflection spectra in non-polarized light. J. Quant. Spectrosc. Radiat. Transf. 2019. 236. P. 106597. https://doi.org/10.1016/j.jqsrt.2019.106597.


Є.Ф.Венгер, В.О. Мороженко

ПОЛЯРИЗАЦІЙНИЙ ВПЛИВ ОДНОМІРНИХ НАПІВПРОВІДНИКОВИХ МАГНІТО-ФОТОННИХ СТРУКТУР НА НЕПОЛЯРИЗОВАНЕ СВІТЛО

Теоретично та експериментально досліджено поляризаційні характеристики світла, що відбилось від одномірної магніто-фотонної структури (МФС) та пройшло крізь неї. Встановлено, що неполяризоване світло після взаємодії із МФС, що знаходиться в зовнішньому магнітному полі, набуває кругової поляризації. Ступінь поляризації та напрямок обертання залежать як від величини магнітного поля, так і від довжини хвилі. В експериментах були застосовані МФС на основі напівпровідника InAs електронного типу. Дослідження проводились в середньому та дальньому інфрачервоному діапазоні довжин хвиль, що відповідає ефекту Фарадея на вільних носіях. Отримані експериментальні результати узгоджуються із теоретичними. Результати досліджень можуть бути застосовані для створення пристроїв управління параметрами світла теплового спектрального діапазону.   


Ключові слова: магніто-фотонні структури, пропускання, відбивання, поляризація, оптичні пристрої.