https://doi.org/10.15407/jopt.2016.51.091
Optoelectron. Semicond. Tech. 51, 91-103 (2016)
V.O. Lysiuk, S.O. Kostyukevych, K.V. Kostyukevych, A.A. Koptiukh, V.S. Stashchuk1
FEATURES OF PHOTONIC CRYSTALS (REVIEW)
The peculiarities of the photonic crystal operation, methods of creating the photonic band gap and math modeling have been considered. Special attention was paid to methods of manufactoring the photonic crystals and principles of development of hybrid photonic sensors and devices. Perspectives for applications of the described technologies for manufacturing the various devices and systems have been reviewed.
Keywords: photonic crystals, plasmon, sensor, ion implantation.
References
1. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987. 58, No. 20. P. 2059-2062.
https://doi.org/10.1103/PhysRevLett.58.2059
2. Yablonovitch E., Gmitter T.J. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1991. 67, No. 17. P. 2295-2299.
https://doi.org/10.1103/PhysRevLett.67.2295
3. Feynman R.P. Quantum Electrodynamics. Westview Press, 1998. 208 p.
4. Born M. and Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, 1999. 936 p.
5. Lavrinenko A., Borel P.I., Frandsen L.H. et al. Comprehensive FDTD modelling of photonic crystal waveguide components. Opt. Exp. 2004. 12, No. 2. P. 234-248.
https://doi.org/10.1364/OPEX.12.000234
6. Zetao Ma, Kazuhiko Ogusu. FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation. Opt. Communs. 2009. 282, No. 7. P. 1322-1325.
https://doi.org/10.1016/j.optcom.2008.12.055
7. Vlasov Yu.A., Xiang-Zheng Bo, Sturm J.C. & Norris D.J. On-chip natural assembly of silicon photonic bandgap crystals. Nature. 2001. 414. P. 289-293.
https://doi.org/10.1038/35104529
8. Junhu Zhang, Zhiqiang Sun, Bai Yang. Self-assembly of photonic crystals from polymer colloids. Current Opinion in Colloid & Interface Science. 2009. 14, No. 2. P. 103-114.
https://doi.org/10.1016/j.cocis.2008.09.001
9. Passoni L., Criante L., Fumagalli F. et al. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano. 2014. 8, No. 12. P. 12167-12174.
https://doi.org/10.1021/nn5037202
10. Peng Yao, Schneider G.J., Prather D.W., Wetzel E.D., and O'Brien D.J. Fabrication of three-dimensional photonic crystals with multilayer photolithography. Opt. Exp. 2005. 13. P. 2370-2376.
https://doi.org/10.1364/OPEX.13.002370
11. Saulius Juodkazis, Lorenzo Rosa, Sven Bauerdick, Lloyd Peto, Ramy El-Ganainy, and Sajeev John, Sculpturing of photonic crystals by ion beam lithography: Towards complete photonic bandgap at visible wavelengths. Opt. Exp. 2011. 19. P. 5802-5810.
https://doi.org/10.1364/OE.19.005802
12. Comoretto D. Organic and Hybrid Photonic Crystals. Springer, 2015. 497 p.
https://doi.org/10.1007/978-3-319-16580-6
13. George D., Lutkenhaus J., Lowell D., Moazzezi M. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4+1, 5+1 and 6+1 configurations. Opt. Exp. 2014. 22. P. 22421-22431.
https://doi.org/10.1364/OE.22.022421
14. Lasagni A.F., Roch T., Berger J., Kunze T., Lang V., Beyer E. To use or not to use (direct laser interference patterning), that is the question. Proc. SPIE. 2015. 9351. P. 935115.
https://doi.org/10.1117/12.2081976
15. Satoru Shoji and Satoshi Kawata. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 2000. 76, No. 19. P. 2668-2670.
https://doi.org/10.1063/1.126438
16. Roch T., Benke D., Milles S. et al. Dependence between friction of laser interference patterned carbon and the thin film morphology. Diamond Related Mater. 2015. 55. P. 16-21.
https://doi.org/10.1016/j.diamond.2015.02.002
17. Holzner F. Thermal Probe Nanolithography for Novel Photonic Devices. Advanced Photonics 2015, OSA Technical Digest. 2015. 201. IT2A.2.
https://doi.org/10.1364/IPRSN.2015.IT2A.2
18. Nazvanov V.F. Fotonnye kristally v primerah. M.: Kapital, 2011. 57 c. (in Russian)
19. Ameling R., Langguth L., Hentschel M. et al. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010. 97. P. 253116.
https://doi.org/10.1063/1.3530795
20. Jiafang Li, MD Muntasir Hossain, Baohua Jia, Dario Buso, and Min Gu, Three-dimensional hybrid photonic crystals merged with localized plasmon resonances. Opt. Exp. 2010. 18. P. 4491-4498.
https://doi.org/10.1364/OE.18.004491
21. Stepanov A.L., Galyautdinov M.F., Evlyukhin A.B. et al. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation. Appl. Phys. A. 2013. 111, No. 1. P. 261-264.
https://doi.org/10.1007/s00339-012-7474-5
22. Ajgaonkar M., Zhang Y., Grebel H., Brown R., Jacobson D. and White C.W. Nonlinear properties of ionimplanted photonic crystals. Nonlinear Optics: Materials, Fundamentals, and Applications - 2000. Technical Digest. Kaua'i-Lihue, HI, USA. P. 332-334.
23. Lysiuk V.O., Staschuk V.S., Androsyuk I.G., Moskalenko N.L. Optical properties of ion implanted thin Ni films on lithium niobate. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. 14, No. 1. P. 59-61.
https://doi.org/10.15407/spqeo14.01.059
24. Lysiuk V.O. Influence of ion implantation on optical properties of thin Mo films on lithium niobate. Metallofizika i novejshie tehnologii. 2011. 33, № 10. S. 1343-1349.
25. Lysiuk V.O., Staschuk V.S., Klyui M.I. Influence of ion implantation on optical properties of thin Pd films on lithium niobate. Functional Materials. 2011. 18, No. 3. P. 320-323.
26. Sarkisov S.S., Curley M.J., Williams E.K. et al. Proc. SPIE. 2000. 4097. P. 186-197.
27. Katharina Lorenz and Elke Wendler. Implantation Damage Formation in GaN and ZnO, Ion Implantation. Ed. Prof. Mark Goorsky. InTech, 2012. Available from: http://www.intechopen.com/books/ionimplantation/implantation-damage-formation-in-gan-and-zno
28. Umapada Pal and Ovidio Peña Rodríguez. Ion Implantation for the Fabrication of Plasmonic Nanocomposites: A Brief Review, Ion Implantation. Ed. Prof. Mark Goorsky, InTech. 2012. Available from: http://www.intechopen.com/books/ion-implantation/ion-implantation-for-the-fabricationof-plasmonicnanocomposites-a-brief-review
29. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of Light. New Jersey: Princeton University Press, 2008. 427 p.
30. Yukhymchuk V.O., Kostyukevych S.A., Dzhagan V.M. et al. SERS of Rhodamine 6G on substrates with laterally ordered and random gold nanoislands. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. 15, No. 3. P. 232-238.
https://doi.org/10.15407/spqeo15.03.232
31. Bryan K.M., Zhang Jia, Pervez N.K. et al. Inexpensive photonic crystal spectrometer for colorimetric sensing applications. Opt. Exp. 2013. 21. P. 4411-4423.
https://doi.org/10.1364/OE.21.004411
В.О. Лисюк, С.О. Костюкевич, К.В. Костюкевич, А.А. Коптюх, В.С. Стащук1
ОСОБЛИВОСТІ ФОТОННИХ КРИСТАЛІВ (ОГЛЯД)
У роботі розглянуто особливості функціонування фотонних кристалів, методи створення фотонної забороненої зони та види математичного моделювання. Особливу увагу приділено методам виготовлення фотонних кристалів та принципам побудови гібридних фотонних сенсорів та пристроїв. Розглянуто перспективи використання описаних технологій для виготовленні різноманітних приладів та систем.
Ключові слова: фотонні кристали, плазмон, сенсор, іонна імплантація.