https://doi.org/10.15407/jopt.2018.53.083

Optoelectron. Semicond. Tech. 53, 83-123 (2018)

L.V. Zavyalova, G.S. Svechnikov, N.N. Roshchina, B.A. Snopok

PREPARATION AND CHARACTERIZATION OF АІ-VІІІВVІ SEMICONDUCTOR FILMS AND THE FUNCTIONAL STRUCTURES BASED ON THEM: FEATURES AND CAPABILITIES OF THE CVD METHOD USING DITHIOCARBAMATES

This paper considers various aspects and directions related to development of original chemical methods for deposition of semiconductor films, as well as the CVD method for producing films from dithiocarbamate. This method was first developed at the Institute of Semiconductor Physics, National Academy of Sciences of Ukraine. The distinctive features of this method include the capability to obtain films of binary compounds from a single precursor, as well as the opportunity to grow high-quality films in air-based atmosphere. As a result, this method is able to produce a large number of AІ-VІІI BVІ semiconductor compounds. The focus of this paper is the initial development phase associated with the search for precursors that meet technology and starting materials requirements. The technology development stages that are considered include: the synthesis of initial materials, their thermoanalysis, the study of the growth kinetics of films, deposition of films of various compounds, study of their structure, surface morphology, physical, optical, and semiconductor properties, as well as preparation of film structures based on them. This study demonstrates that polycrystalline textured films with high adhesion to substrates of various types are formed on non-orienting substrates, and highly oriented epitaxial films formed on orienting substrates. This CVD method is characterized by a relatively low (200–350 ° C) film formation temperature and high growth rates (1…20 nm/s), the film thickness ranges from 50 nm up to 10 μm, and deposition of the films is carried out in a quasi-closed volume environment with air-based atmosphere. The obtained elements include: photoconductive, fluorescent, conductive, resistor, and acoustoelectronic elements. Commercially available optoelectronic devices have been manufactured as based on the obtained photoconductive films.

Keywords: semiconductor films АІ-VІІI ВVІ , CVD-method, DTC-complex, dithiocarbamate

References

1. Razuvaev G.A., Gribov, B.Yu., Domrachev G.A., Salamatin B.A. Metalloorganicheskie soedineniya v elektronike, Moskva: Nauka, 1972. (in Russian)

2. Nqombolo A., Ajibade P.A. Synthesis and spectral studies of Ni(II) dithiocarbamate complexes and their use as precursors for nickel sulphides nanocrystals. J. Chem. 2016. Article ID 1293790. Р. 2−9.

https://doi.org/10.1155/2016/1293790

3. Onwudiwe D.C., Ajibade P.A. ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 2011. 12. Р. 5538−5551.

https://doi.org/10.3390/ijms12095538

4. Ehsan M.A., Ming H.N., McKee V., Peiris Th.A.N., Wijayantha-Kahagala-Gamage U., Arifin Z., Mazhar M. Vysotskite structured photoactive palladium sulphide thin films from dithiocarbamate derivatives. New J. Chem. 2014. 8. Р. 4083−4091.

https://doi.org/10.1039/C4NJ00564C

5. Adeyemi J.O., Onwudiwe D.C. Organotin(IV) dithiocarbamate complexes: Chemistry and biological activity. Molecules. 2018. 23. Р. 2571.

https://doi.org/10.3390/molecules23102571

6. Duraja S.A., Duffyb N.V., Heppc A.F., Cowena J.E., Hoopsb M.D., Brothersb S.M., Bairdb M.J., Fanwickd P.E., Harrisc J.D., Jin M. Synthesis, characterization, and processing of copper, indium, and gallium dithiocarbamates for energy conversion applications. NASA Glenn Research Center. (Cleveland, March 18). Cleveland, 2009. Р. 1−16.

7. Ramasamy K., Kuznetsov V.L., Gopal K., Malik M.A., Raftery J., Edwards P.P., O'Brien P. Organotin dithiocarbamates: Single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chemistry of Materials. 2013. Р. 266−276.

https://doi.org/10.1021/cm301660n

8. Sudlow A.L. The Synthesis of Precursors for the Deposition of Photovoltaic Thin Films. Ph.D., University of Bath, Department of Chemistry. May 2012.

9. Meyer D., Schäfer T., Schulz Ph., Jung S., Rittich J., Mokros D., Segger I., Maercks F., Effertz Ch., Mazzarello R., Wuttig M. Dithiocarbamate self-assembled monolayers as efficient surface modifiers for low work function noble metals. Langmuir. 2016. 32. Р. 8812−8817.

https://doi.org/10.1021/acs.langmuir.6b01578

10. Fricshe K. Poluchenie poluprovodnikov. Moskva: Mir, 1964. (in Russian)

11. Abrikosov N.H., Bankina V.F., Poreckaya L.V., Skudnova E.V., Shelimova L.E. Poluprovodnikovye soedineniya, ih poluchenie i svojstva. Moskva: Nauka, 1967. (in Russian)

12. Frankomb M.N., Dzhonson Dzh.E. Poluchenie i svojstva poluprovodnikovyh plyonok. Pod red. G. Hassa i R.E. Tuna. Moskva: Mir, 1972. S. 140−323. (in Russian)

13. Shryoder H. Osazhdenie okisnyh sloyov iz organicheskih rastvorov. Pod red. G. Hassa i R.E. Tuna. Moskva: Mir, 1972. S.84−139. (in Russian)

14. Cyamberlin R.R.and Skarman I.S. J. Electrochem. Soc. 1966. 111, No 1. Р. 86.

https://doi.org/10.1149/1.2423871

15. Kristallizaciya iz gazovoj fazy. Pod red. N. N. Sheftalya. Moskva: Mir, 1965. (in Russian)

16. Manasevit H.M., Simpson W.J. J. Electrochem. Soc. 1969. 116, No 12. Р. 1725.

https://doi.org/10.1149/1.2411685

17. Kerm K.V. Issledovanie uslovij polucheniya fotochuvstvitelnyh plyonok sulfida kadmiya i ego analogov metodom himicheskogo raspyleniya: diss. ... kand. fiz.-mat. nauk. Tallinnskij politehnicheskij institut. Tallin, 1971. (in Russian)

18. Urickaya A.A. Himicheskoe osazhdenie iz rastvorov tonkih plyonok sulfida kadmiya na poverhnost stekla: diss. ... kand. fiz.-mat. nauk. Sverdlovskij politehnicheskij institut. Sverdlovsk, 1965. (in Russian)

19. Patent № 7376/68, Yaponiya. Yamasita T., Iosida M. Akc. o-vo «Macusita denki sangyoo».(in Russian)

20. Zharovskij L.F., Rahlin M.Ya., Svechnikov S.V., Smovzh A.K. Optoelektronnoe ustrojstvo funkcionalnogo izmeneniya napryazheniya. Elektronnaya promyshlennost. 1978. № 7. S. 58−61. (in Russian)

21. Stary J. The Solvent Extraction of Metal Chelates. Pergamon Press, 1964.

https://doi.org/10.1016/B978-0-08-010821-6.50007-7

22. Rozotti F. Termodinamika obrazovaniya kompleksov ionov metallov v rastvorah. Sovremennaya himiya koordinacionnyh soedinenij. Pod red. Dzh. Lyuisa i R. Uilkinsa. Moskva: Inostrannaya literatura, 1963. (in Russian)

23. Химия металлоорганических соединений. Под ред. Цейса. Москва: Мир, 1964.

Himiya metalloorganicheskih soedinenij. Pod red. Cejsa. Moskva: Mir, 1964. (in Russian)

24. Uendland U. Termicheskie metody analiza. Moskva: Mir, 1978. (in Russian)

25 A. s. № 409468 (SSSR)) ot 7.09.73. Sposob polucheniya sloev poluprovodnikovyh materialov. Zharovskij L.F., Zavyalova L.V., Svechnikov S.V. (in Russian)

26. Zharovsky L.F., Zavyalova L.V, Svechnikov G.S. Metal-chalcogenides films prepared from chelate metalorganic compounds. Thin Solid Films. 1985. 128. P. 241−249.

https://doi.org/10.1016/0040-6090(85)90076-8

27. Byrko V.M. Ditiokarbamaty. Moskva: Nauka, 1984. (in Russian)

28. Zolotov Yu.A., Alimarin I.P. Doklady AE SSSR. 1960. 136, № 3. S. 603. (in Russian)

29. Zolotov Yu.A., Alimarin I.P. Radiohimiya. 1962. 4, № 3. S. 272. (in Russian)

30. Blok B. Stereohimiya soedinenij s koordinacionnym chislom 4. Himiya koordinacionnyh soedinenij. Pod red. Dzh. Bejlar ml. Moskva: Inostrannaya literatura, 1960. (in Russian)

31. Peri R. Cikloobrazovanie i teoriya obrazovaniya geterociklicheskih soedinenij s ionami metallov. Himiya koordinacionnyh soedinenij s ionami. Pod red. Dzh. Bejlar, ml. Moskva: Inostrannaya literatura, 1976. (in Russian)

32. Svechnikov S.V., Zharovskij L.F., Zavyalova L.V., Poludin V.I. i dr. Issledovanie kinetiki rosta i struktury plyonok sulfidov kadmiya i cinka, himicheski osazhdennyh iz metalloorganicheskih soedinenij. Neorganicheskie materialy. 1978. 14, № 4. (in Russian)

33. Zavyalova L.V., Nichiporovich A.S., Svechnikov G.S., Torchun N.M. Struktura epitaksialnyh plyonok sulfidov kadmiya i cinka, poluchennyh iz helatnyh metalloorganicheskih soedinenij. Neorganicheskie materialy. 1986. 22, № 10. (in Russian)

34. Zavyalova L.V. Razrabotka i issledovanie metoda polucheniya plyonok poluprovodnikovyh materialov iz vnutrikompleksnyh soedinenij. Kand. diss. Kiev, 1982. (in Russian)

35. A. s. № 1508852 (SSSR)) ot 15.05.89. Tonkoplyonochnyj rezistor. Volodin N.M., Smovzh A.K., Zavyalova L.V., Choni V.G. (in Russian)

36. A. s. № 557700 (SSSR)) ot 14.01.77 Sposob polucheniya sloev poluprovodnikovyh materialov. Zharovskij L.F., Zavyalova L.V., Svechnikov S.V., Rahlin M.Ya. (in Russian)

37. Barre P. Kinetika geterogennyh reakcij. Pod red. V.V. Boldyreva. Moskva: Mir, 1976. (in Russian)

38. Aleksandrov L.N. Kinetika obrazovaniya i struktura tvyordyh sloyov. Novosibirsk: Nauka, 1972. (in Russian)

39. Volkenshtejn F.F. Elektronnaya teoriya kataliza na poluprovodnikah. Moskva: Glavnoe izd-vo fiz.- mat. literatury, 1960. (in Russian)

40. A. s. № 1302749 (SSSR)) ot 08.12.86. Sposob polucheniya epitaksialnyh sloev halkogenidov metallov. Svechnikov G.S., Smovzh A.K., Zavyalova L.V. (in Russian)

41. Hyubner K., Kyun G. Processy rosta i sinteza poluprovodnikovyh kristallov i plyonok. Ch. 2. Novosibirsk: Nauka, 1975. (in Russian)

42. Kalinkin I.P., Aleskovskij V.B., Simashkevich A.V. Epitaksialnye plyonki soedinenij AIIVVI. L.: Izd-vo LGU, 1978. (in Russian)

43. A. s. № 724010 (SSSR) ot 28.11.79. Sposob izgotovleniya potenciometra. Zharovskij L.F., Rahlin M.Ya., Smovzh A.K., Chernova A.S. (in Russian)

44. A. s. SSSR № 1091785 (SSSR) ot 08.01.84. Fotopriyomnik s barerom Shottki. Chernova A.S., Babak A.K., Kilchickaya S.S., Striha V.I. (in Russian)

45. Svechnikov G.S., Zavyalova L.V., Roshchina N.N., Prokopenko I.V., Berezhinsky L.I., Khomchenko V.S., Lytvyn O.S. Composite film structures containg ZnS, CdS nanoparticles prepared by MOC pyrolysis at low temperatures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2004. 7. No 2. P. 157-160.

https://doi.org/10.15407/spqeo7.02.157

46. Grachov A.I., Kuharskij A.A., Kaminskij V.V., Pisarev S.V., Smirnov I.A., Shulman S.G. Pisma v ZhTF. 1976. 2. № 14. C. 628-631. (in Russian)

47. Kaminskij V.V., Smirnov I.A. Pribory i sistemy upravleniya. 1985. №8. C. 22-24. (in Russian)

48. Alvges E.C., Bradley D.S. J. Chem. Soc. Dalton Trans. 1972. 14. Р. 1580-1584.

49. Domrachev G.A., Zavyalova L.V., Svechnikov S.V., Suvorova O.N., Kirillov A.I., Shupak E.A. Optoelektronika i poluprovodnikovaya tehnika. 1993. № 25. S. 101-104. (in Russian)

50. Zavyalova L.V., Domrachev G A., Suvorova O.N., Shupak E.A. and Svechnikov G.S. Mat. Res. Soc. Proc. 1993. 282. P. 697-702.

https://doi.org/10.1557/PROC-282-697

51. Volodin N.M., Zavyalova L.V., Kirillov A.I., Svechnikov S.V., Prokopenko I.V., Khanova A.V. Semiconductors Physics, Quantum Electronics and Optoelectronics. 1999. 2, No 2. P. 78-83.

52. A. s. № 1441900 ot 01.08.88. Termometr soprotivleniya. Volodin N.M., Zavyalova L.V., Serova E.A., Smovzh A.K. (in Russian)

53. A. s. № 1724388 ot 05.08.92. Sposob polucheniya sloev sulfidov lantanoidov. Suvorova O.N., Zavyalova L.V., Shupak E.A., Serova E.A. (in Russian)

54. Patent № 2069241 (Rossiya) ot 20.11.96. Sposob polucheniya sloyov poluprovodnikovogo halkogenida. Suvorova O.N., Shupak E.A., Zavyalova L.V., Serova E.A., Hanova A.V., Volodin N.M. (in Russian)

55. Domrachev G.A., Suvorova O.N., Zavyalova L.V., Shupak E.A. Samarium monosulfide films prepared from organometallic compounds. Mater. Res. Soc. 1993. 282.

https://doi.org/10.1557/PROC-282-697

56. Zharovskij L.F., Zavyalova L.V., Svechnikov S.V., Kaganovich E.B. Fotochuvstvitelnye plyonki sernistogo kadmiya, osazhdennye iz helatnyh metalloorganicheskih soedinenij. Poluprovodnikovaya tehnika i mikroelektronika. 1974. Vyp. 17. (in Russian)

57. А. s. № 650268 (SSSR) ot 04.11.78. Sposob polucheniya fotorezistornyh sloev halkogenidov metallov II gruppy. Zharovskij L.F., Zavyalova L.V., Svechnikov S.V., Sokolova T.G. (in Russian)

58. Zharovskij L.F., Svechnikov S.V., Zavyalova L.V., Rahlin M.Ya. Poluchenie fotochuvstvitelnyh plyonok iz helatnyh metalloorganicheskih soedinenij. Poluprovodnikovaya tehnika i mikroelektronika. 1979. Vyp. 29. (in Russian)

59. Kryoger F. Himiya nesovershennyh kristallov. Moskva: Mir,1969. (in Russian)

60. Svechnikov S.V., Smovzh A.K., Kaganovich E.B. Fotopotenciometry i funkcionalnye fotorezistory. Moskva: Sovetskoe radio, 1978. (in Russian)

61. Byub R. Fotoprovodimost tvyordyh tel. Moskva: Inostrannaya literatura, 1962. (in Russian)

62. Gorlovskij V.B., Smovzh A.K., Zavyalova L.V., Choni V.G. O kriterii stimulyacii vremeni aktivacii fotoprovodyashih plyonok tipa AIIBVI. Fotoelektronika. Mezhrespublikanskij sbornik. Vyp. 2. Izd. OdGU, 1988. (in Russian)

63. Zyuganov A.N., Svechnikov S.V. Inzhekcionno kontaktnye yavleniya v poluprovodnikah. Kiev: Naukova dumka, 1981. 256 s. (in Russian)

64. Kaganovich E.B., Maksimenko Yu.N. Fotorezistornye sendvich-struktury na osnove selenida kadmiya. PTM. 1980. Vyp. 32. S. 34-40. (in Russian)

65. Kaganovich E.B., Maksimenko Yu N., Svechnikov S V. Fotoelektricheskie svojstva plyonochnyh sendvich-struktur na osnove sulfoselenidov kadmiya. OPT. 1982. Vyp. 2. S. 19-23. (in Russian)

66. A. s. 1074347 (SSSR) ot 15.10.83. Sposob izgotovleniya fotorezistornyh sendvich-struktur. Svechnikov S.V., Smovzh A.K., Zavyalova L.V. (in Russian)

67. A. s. 1574123 (SSSR) ot 22.02.90. Sposob izgotovleniya fotorezistornyh sendvich-struktur. Svechnikov S.V., Zykov G.A., Smovzh A.K., Zavyalova L.V. (in Russian)

68. A. s. № 1597050 (SSSR) ot 01.06.90. Sposob izgotovleniya fotorezistornyh sendvich-struktur. Svechnikov S.V., Zykov G.A., Smovzh A.K., Zavyalova L.V. (in Russian)

69. Svechnikov S.V., Smovzh A.K., Zavyalova L.V., Chumak S.M. Poluchenie sernistokadmievyh fotorezistornyh sendvich-struktur himicheskim metodom. Elektronnaya tehnika. Seriya Mikroelektronika. 1984. № 3. S. 109. (in Russian)

70. Zavyalova L.V., Ivanov A.M., Svechnikov S.V., Smertenko P.S., Choni V.G. Issledovanie processa tokoprohozhdeniya v sernistokadmievyh prodolnyh fotopriemnikah, poluchennyh himicheskim metodom. UFZh. 1984. 29, № 11. S. 1686-1691. (in Russian)

71. Zavyalova L.V., Svechnikov S.V., Smovzh A.K., Stepanchuk V.P. Voltampernye, lyuksampernye i spektralnye harakteristiki fotorezistornyh sendvich-struktur na osnove himicheski osazhdennyh plyonok sulfida kadmiya. Optoelektronika i poluprovodnikovaya tehnika. 1987. Vyp. 11. S. 66-72. (in Russian)

72. Smovzh A.K., Zavyalova L.V., Choni V.G. Fotopriemniki prodolnogo tipa na osnove plyonok sulfida kadmiya, poluchennyh himicheskim metodom. Fizicheskaya elektronika. 1987. Vyp. 34. S. 44-47. (in Russian)

73. Rode Н. 1. Double injection in monocrystals CdS. phvs. status solidi (b). 1967. 23, No 1. P. 277-287.

https://doi.org/10.1002/pssb.19670230127

74. Zyuganov A.H., Malovichko A.V., Svechnikov S.V. Stimulyaciya inzhekcionnyh tokov v poluprovodnikah obemnym vozbuzhdeniem nositelej. PTM. 1974. Vyp. 17. S. 65-70. (in Russian)

75. Zyuganov A.N., Mihelashvili V.M., Pismennyj Yu.G. i dr. Fotochuvstvitelnost poluprovodnika v rezhime tokov, ogranichennyh prostranstvennym zaryadom. PTM. 1976. Vyp. 22. S. 64-69. (in Russian)

76. Pekar S.I. Kontakt poluprovodnika s metallom i prielektrodnye skachki potenciala. Izv. AN SSSR. Ser. fiz. 5. 1941. № 4/5. S. 422-433. (in Russian)

77. Svechnikov S.V., Vlasenko N.A., Zavyalova L.V., Savin A.K. Elektrolyuminescentnye izluchateli na osnove plyonok ZnS, poluchennyh iz helatnyh metalloorganicheskih soedinenij. ZhTF. 1985. 55, Vyp. 12. S. 2406-2408. (in Russian)

78. Svechnikov S.V., Zavyalova L.V., Savin A.K. Primenenie metalloorganicheskih soedinenij dlya polucheniya tonkoplyonochnyh elektrolyuminescentnyh struktur. Elektronnaya tehnika. Seriya 2. Poluprovodnikovye pribory. 1986. Vyp. 2. S. 181. (in Russian)

79. Svechnikov S.V., Vlasenko N.A., Zavyalova L.V., Savin A.K. Elektrolyuminescentnye plyonki ZnS:Mn, poluchennye iz helatnyh MOS s legirovaniem v processe rosta. ZhTF. 1987. 57, Vyp. 9. (in Russian)

80. Vlasenko N.A., Svechnikov S.V., Zavyalova L.V., Beleckij A.I. Svetotehnicheskie harakteristiki elektrolyuminescentnyh struktur na baze plyonok ZnS:Mn, poluchennyh nizkotemperaturnym himicheskim osazhdeniem. Optoelektronika i poluprovodnikovaya tehnika. 1991. Vyp. 19.

81. Zavyalova L.V., Savin A.K., and Svechnikov G.S. ZnS:Mn electroluninescent films prepared from chelate metalorganic compounds. J. Displays. 1997. 18. P. 73-78. (in Russian)

https://doi.org/10.1016/S0141-9382(97)00007-3

82. Zavyalova L.V., Beletski A.I. and Svechnikov G.S. Electroluminescent ZnS:Mn films prepared by an MOCVD method based on dithiocarbamate precursors. Semicond. Sci. Technol. 1999. 14. P. 446-449.

https://doi.org/10.1088/0268-1242/14/5/013

83. Vlasenko N.A., Kopytko Yu.V., Kurilenko B.V. Plyonochnye elektrolyuminescentnye istochniki sveta povyshennoj yarkosti na osnove ZnS. Tartu: TGU, 1979. Vyp. 509. C. 16-33. (in Russian)

84. Vlasenko N.A., Kurilenko B.V., Cyrkunov Yu.A. Elektrolyuminescentnye tonkoplyonochnye izluchateli i ih primenenie. Kiev: Naukova dumka, 1981. (in Russian)

85. Lorenc M.R. Termodinamika, prigotovlenie materialov i vyrashivanie kristallov. V kn.: Fizika i himiya soedinenij AIIVVI. Moskva: Mir, 1970. S. 65-94. (in Russian)

86. Suntola T., Antson J., Pakkala F. Atomic layer epitaxy for producing EL-thin films. CID Digest, 1980. 80. Р. 108.

87. Cattel A.F., Cockayne B., Dexter K. Electroluminescence from films of ZnS: Mn prepared by organometallic chemical vapor deposition. IEEE Trans. Electron Devices. 1983. ED-30, No 5. Р. 471-475.

https://doi.org/10.1109/T-ED.1983.21150

88. Ono Y.A. Electroluminescent Displays. New Jersey, London:World Scientific Publishing Co.Singapore, 1995.

https://doi.org/10.1142/2504

89. Svyechnikov S.V., Zavyalova L.V., Roshina N.N., Rodionov V.E., Homchenko V.S., Berezhinskij L.I., Prokopenko I.V., Litvin P.M., Litvin O.C., Kolomzarov Yu.V., Cirkunov Yu.A. Lyuminesciruyushie plyonki ZnS:Cu, poluchennye himicheskim metodom. FTP. 2000. 34. № 10. S. 1178-1182. (in Russian)

https://doi.org/10.1134/1.1317569

90. Homchenko V.S., Zavyalova L.V., Roshina N.N., Svechnikov G.S., Prokopenko I.V., Rodionov V.E., Litvin P.M., Litvin O.C., Cirkunov Yu.A. Struktura, svojstva i mehanizm elektrolyuminescencii plyonok ZnS:Cu, poluchennyh himicheskim metodom. ZhTF. 2002. 72, №2. S. 44-48. (in Russian)

91. Khomchenko V., Rodionov V., Zavyalova L., Svechnikov G., Roshchina N., Khachatryan V., Savin A., Bacherikov Yu., Marchilo O., Tzyrkynov Yu., Stiles J. Electroluminescent ZnS-Cu films made by metalorganic chemical vapour deposition and thermodiffusion. Semicond. Sci. Technol. 2003. 18. P. 512-516.

https://doi.org/10.1088/0268-1242/18/6/320

92. Khomchenko V., Fedorenko L., Yusupov N., Rodionov V., Bacherikov Yu., Svechnikov G., Zavyalova L., Rochina N., Lytvyn P., Muchlio M. Laser processing and characterization of ZnS-Cu thin film. Appl. Surf. Sci. 2005. 247, № 1-4. P. 434-439.

https://doi.org/10.1016/j.apsusc.2005.01.075

93. Kryshtab T.G., Khomchenko V.S., Andraca-Adame J.A., Zavyalova L.V., Roshchina N.N., Rodionov V.E., Khachatryan V.B. Preparation and properties of thin ZnS:Cu films phosphors. Thin Solid Films. 2006. 515. P. 513-516.

https://doi.org/10.1016/j.tsf.2005.12.284

94. Khomchenko V.S., Kryshtab T.G., Savin A.K., Zavyalova L.V., Roshchina N.N., Rodionov V.E., Lytvyn O.S., Kushnirenko V.I., Khachatryan V.B., Andraca-Adame J.A. Fabrication and properties of ZnO:Cu and ZnO:Ag thin films. Superlattices and Microstructures. 2007. 42. P. 94-98.

https://doi.org/10.1016/j.spmi.2007.04.016

95. Kryshtab T.G., Khomchenko V.S., Khachatryan V.B., Andraca-Adame J.A., Lytvyn O.S., Kushnirenko V.I. Effect of doping on properties of ZnO:Cu and ZnO:Ag thin films. J. Mater Sci: Mater Electron. 2007. 18. P. 1115-1118.

https://doi.org/10.1007/s10854-007-9256-y

96. Khomchenko V.S., Kononec Ja. F., Vlasenko N.A., Mach R., Reinsperger G.U., Selle B. and Rutz R. Journ of Crystal Growth. 1990. 101. Р. 994.

https://doi.org/10.1016/0022-0248(90)91120-F

97. Madelung O., Weiss H., and Schultz M., eds. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Volume 17, Subvolume B: Physics of IIVI and I-VII Compounds, Semi-Magnetic Semiconductors. Berlin: Springer, 1982.

98. Gurvich A.M. Vvedenie v fizicheskuyu himiyu kristallofosforov. Moskva: Vyssh. shk., 1971.

99. Khomchenko V.S., Roshchina N.N., Zavyalova L.V., Strelchuk V.V., Svechnikov G.S., Tatyanenko N.P., Gromashevskii V.L., Litvin O.S., Avramenko E.A., and Snopok B.A. Structure and the Emission and Piezoelectric Properties of MOCVD Grown ZnS, ZnS-ZnO, and ZnO Films. Techn. Phys. 2014. 59. P. 93-101.

https://doi.org/10.1134/S1063784214010071

100. Kushnirenko V.I., Khomchenko V.S., Zashivailo T.V. and Zavyalova L.V. Luminescence properties of Ag-, Gadoped ZnO and ZnO-ZnS thin films. phys. status solidi (c). 2012. 9, No.8-9. Р. 1821-1825.

https://doi.org/10.1002/pssc.201100618

101. Ferblantier G., Mailly F., Al Asmar R. et al. Sensors and Actuators A. 2005. 122. P. 184-188.

https://doi.org/10.1016/j.sna.2005.04.009

102. Fortunato E., Barquinha P., Pimentel A. et al. Thin Solid Films. 2005. 487. P. 205-211.

https://doi.org/10.1016/j.tsf.2005.01.066

103. Tatyanenko N.P., Gromashevskii V.L., Snopok B.A. Acoustoelectronic structures with an air gap for gas analysis. Sensor Lett. 2010. 8, No 4. Р. 554-563.

https://doi.org/10.1166/sl.2010.1311

104. Gromashevskii V.L., Tatyanenko N.P., Snopok B.A. Application of the transverse acoustoelectric effect to studying silicon surface charging upon water adsorption. Semiconductors. 2013. 47, No 4. Р. 579-585.

https://doi.org/10.1134/S106378261304009X

105. Sharma A.K. Thermal behaviour of metal-dithiocarbamates. Thermochimica Acta. 1986. V.104, Р. 339-372.

https://doi.org/10.1016/0040-6031(86)85208-X

106. Silva M.C.D., Conceição M.M., Trindade M.F.S., Souza A.G., Pinheiro C.D., Machado J.C. and Filho P.F.A. Kinetic and thermodynamic parameters of the thermal decomposition of zinc(II) dialkyldithiocarbamate complexes. Journal of Thermal Analysis and Calorimetry. 2004. 75, No 2. P. 583-590.

https://doi.org/10.1023/B:JTAN.0000027149.08673.8e

107. Singhal S., Garg A.N. and Chandra K. Thermal decomposition of transition metal dithiocarbamates. Journal of Thermal Analysis and Calorimetry. 2004. 78, No 3. P. 941-952.

https://doi.org/10.1007/s10973-005-0460-0

108. Tatyanenko N.P., Roshchina N.N., Gromashevskii V.L., Svechnikov G.S., Zavyalova L.V., Snopok B.A. Semiconductor surface spectroscopy using transverse acousto-electric effect: role of surface charge in photoprocesses at the ZnS/Si interface. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No3. P. 263-272.

https://doi.org/10.15407/spqeo21.03.263

109. A. s. 1481808 (SSSR) ot 22.01.89. Optoelektronnyj funkcionalnyj preobrazovatel. Gorlovskij V.B., Smovzh A.K., Zavyalova L.V., Choni V.G.. (in Russian)


Л.В. Завьялова, Г.С. Свечников, Н.Н. Рощина, Б.А. Снопок

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ПЛЁНОК АІ-VІІІВVІ И ФУНКЦИОНАЛЬНЫХ СТРУКТУР НА ИХ ОСНОВЕ; ОСОБЕННОСТИ И ВОЗМОЖНОСТИ СVD МЕТОДА С ПРИМЕНЕНИЕМ ДИТИОКАРБАМАТОВ

Рассмотрены различные аспекты и направления развития разработанного впервые в ИФП НАНУ оригинального химического метода синтеза моно- и мультифазных полупроводниковых материалов – безвакуумного CVD метода получения плёнок посредством пиролиза металлокомплексов дитиокарбаматов. Его отличительными особенностями являются возможность получения плёнок бинарных соединений из одного, а не из нескольких прекурсоров, а также возможность выращивать качественные плёнки в атмосфере воздуха. Этим методом получено большой ряд полупроводниковых соединений типа АІ-VІІІВVІ . Обзор включает в себя начальный период разработки, связанный с поиском прекурсоров, удовлетворяющих требованиям, предъявляемым к технологии и исходным веществам. Рассмотрены различные этапы развития технологии: синтез исходных компонентов, их термоанализ, исследование кинетики роста плёнок, получение плёнок различных соединений, исследование их структуры, морфологии поверхности, физических, оптических, полупроводниковых свойств, а также получение плёночных структур на их основе. Показано, что на неориентирующих подложках формируются поликристаллические текстурированные плёнки с высокой адгезией к подложкам различного типа, а на ориентирующих – высокоориентированные эпитаксиальные плёнки. Для метода характерны сравнительно низкие (200-350 °С) температуры образования плёнок и высокие скорости их роста (1–20 нм/с), возможность получения плёнок в широком диапазоне толщин (от 50 нм до 10 мкм). Подробно обсуждается получение фотопроводящих, люминесцентных, проводящих и резисторных структур, акустоэлектронных элементов и других систем оптоэлектроники. Приведены примеры серийных устройств на основе плёнок, изготовленных данным методом.

Ключевые слова: полупроводниковые плёнки АІ-VІІІВVІ , CVD-метод, DTC-комплексы, дитиокарбамат.