https://doi.org/10.15407/iopt.2021.56.134

Optoelectron. Semicond. Tech. 56, 134-155 (2021)

Yu. M. Shirshov, K. V. Kostyukevych, R. V. Khistosenko, N. Ya. Gridina, S. A. Kostyukevych, A. V. Samoylov, Yu. V. Ushenin


Optical control of the interface between gold surface and blood cell samples

The optical properties of blood (spectra of the extinction coefficient, k, refractive index, n, etc.) carry important diagnostic information and are usually monitored using bulk samples. In this work, attention is drawn to the interface between the blood volume and the surface of glass or thin gold films on it, where the refractive index may differ from the bulk one. We draw attention to the relationship between two effects – SPR and TIR. It is shown that if the named effects are measured for two different external media 0 and 1 with different refractive indices, then the values of the angles SPR and TIR will be linearly related by the empirical formula SPR1=SPR0+TIR1- TIR0)*K, where the coefficient K depends on the thickness of the transition layer di between the surface and the volume of the liquid medium (suspension). Numerical calculation of K (di) for gold films shows that K = 1.6 at di = 0 and monotonically decreases to 0.01 with an increase in di to 300 nm (and further to 0). Measurement of the angular dependences of reflection, R(), on (1) 100% hematocrit blood samples, (2) hemolyzed samples and (3) washed erythrocytes with dilutions with a buffer solution. It was shown that all samples exhibit a minimum SPR, but the TIR angle can be measured only for blood samples with destroyed membranes (hemolyzed), buffer solution and plasma. The n-value for hemolyzed blood is 1.3505, which is indicative of a low hemoglobin content in the sample. At the same time, di for a sample of 100% hematocrit was 60-105 nm, which indicates a strong deformation of erythrocytes in the form of polyhedrocytes and their dense packing after centrifugation. Washing the cells with a buffer increases di to 280 nm and more and practically eliminates blood cells from the SPR sensitivity region. The reason for this may be that in the blood of 100% hematocrit, erythrocytes are in the form of polyhedrocytes tightly adhering to the gold surface, while as a result of washing and diluting with a buffer solution, the cells relax back into discocytes. As a result, the containing hemoglobin erythrocyte cytoplasm moves away from the surface at a distance di> 300 nm into the suspension volume and leaves the area of the enhanced plasmon-polariton field.

Keywords: surface plasmon resonance (SPR), total internal reflection, (TIR), refractive index, erythrocytes, hematocrit.

References

1. Tuchin V.V., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd Edition, SPIE Press, Bellingham, WA (2015).

https://doi.org/10.1117/3.1003040

2. Novel Biophotonics Techniques and Applications III V.A. Saetchnikov, E.A. Tcherniavskaia, A.V. Saetchnikov, G.Schweiger, A.Ostendorf SPIE Proceedings (Optical Society of America, 2015), paper 954005.

3. Christina Boozer, Gibum Kim, Shuxin Cong, HannWen Guan, Timothy Londergan Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnolog. 17, (2006) 400-405.

https://doi.org/10.1016/j.copbio.2006.06.012

4. Chiang Y.-L, Lin C.-H., Yen M.-Y., Su Y-D., Chen S.-J., Chen H.-f. Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosensors and Bioelectronics. №24, (2009) 1905-1910.

https://doi.org/10.1016/j.bios.2008.09.020

5. Chabot V., Cuerrier C.M., Escher E., Aimez V., Grandbois M., Charette P. G. Biosensing based on surface plasmon resonance and living cells. Biosensors and Bioelectronics. №24, (2009) 1667-1673.

https://doi.org/10.1016/j.bios.2008.08.025

6. Hide M., Tsutsui T., Sato H., Nishimura T., Morimoto K., Yamamoto S., Yoshizato K.Real-Time Analysis of Ligand-Induced Cell Surface and Intracellular Reactions of Living Mast Cells Using a Surface Plasmon Resonance-Based Biosensor. Analytical Biochemistry. №302, (2002) 28-37.

https://doi.org/10.1006/abio.2001.5535

7. Robelek R., Wegener J. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosensors and Bioelectronics. 25, (2010) 1221-1224.8. Baumgarten, S., Robelek, R. Surface Plasmon Resonance (SPR) Sensors for the rapid, sensitive detection of the cellular response to osmotic stress. Sensors and Actuators B: Chemical. Volume 156, Issue 2, August, (2011) 798-804.

https://doi.org/10.1016/j.snb.2011.02.041

8 Quinn J.G., O'Neill S., Doyle A., McAtamney C., Diamond D., MacCraith B. D., O'Kennedy R. Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Analytical Biochemistry. 281, (2000) 135-143.

https://doi.org/10.1006/abio.2000.4564

10. Quinn J.G.,'Kennedy R. O., Smyth M., Moulds J., Frame T. Detection of blood group antigens utilising immobilized antibodies and surface plasmon resonance. Journal of Immunological Methods. 206, (1997) 87-96.

https://doi.org/10.1016/S0022-1759(97)00092-6

11. Bosschaart N., Edelman G.J., Aalders M.C.G., van Leeuwen T.G. A literature review and novel theoretical approach on the optical properties of whole blood Faber Lasers. Med Sci. 29, (2014) 453-479.

https://doi.org/10.1007/s10103-013-1446-7

12. Ghosh N., Buddhiwant P., Uppal A., Majumder S. K., Patel H. S., Gupta P. K. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements. Applied physics letters. 88, (2006) 084101.

https://doi.org/10.1063/1.2176854

13. Gienger J., Smuda K., Müller R., Bär M., Neukammer J. Refractive index of human red blood cells between 290 nm and 1100 nm determined by optical extinction measurements. Nature. Scientific reports. 9, (2019) 4623.

https://doi.org/10.1038/s41598-019-38767-5

14. Jin Y. L., Chen J. Y., Xu L., Wang P. N. Refractive index measurement for biomaterial samples by total internal reflection. Phys. Med. Biol. 51 (2006) 371-379.

https://doi.org/10.1088/0031-9155/51/20/N02

15. Lazareva E.N., Tuchin V.V. Measurement of refractive index of hemoglobin in the visible/NIR spectral range. Journal of Biomedical Optics. 23(3), (2018) 035004.

https://doi.org/10.1117/1.JBO.23.3.035004

16. Lazareva E.N., Tuchin V.V. Blood refractive index modelling in the visible and near infrared spectral regions J of Biomedical Photonics & Eng. 4(1), (2018) 010503-1.

https://doi.org/10.18287/JBPE18.04.010503

17. Liu S., Deng Zh., Li J., Wang J., Huang N., Cui R., Zhang Q., Mei J., Zhou W., Zhang Ch., Ye Q., Tian J. Measurement of the refractive index of whole blood and its components for a continuous spectral region. Journal of Biomedical Optics. 24(3), (2019) 035003.

https://doi.org/10.1117/1.JBO.24.3.035003

18. Friebel M., Meinke M. Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. Applied Optics. 45 (12), (2006) 2838-2842.

https://doi.org/10.1364/AO.45.002838

19. Li H., Xie Sh. Measurement method of the refractive index of biotissue by total internal reflection. Appl. Opt. 35 (10), (1996).

https://doi.org/10.1364/AO.35.001793

20. Hui Li, Lei Lin, Shusen Xie Refractive index of human whole blood with different types in the visible and nearinfrared ranges. Proc SPIE. 3914, (2000) 517 - 521.

21. Hansson K.M., Vikinge T.P., Ranby M., Tengvall P., Lundstrom I., Johansen K., Lindahl T.L. Surface plasmon resonance (SPR) analysis of coagulation in whole blood with application in prothrombin time assay. Biosensors & Bioelectronics. 14, (1999) 671-682.

https://doi.org/10.1016/S0956-5663(99)00050-0

22. Hansson K.M., Tengvall P., Lundstrom I., Ranby M., Lindahl T. L. Comparative studies with surface plasmon resonance and free oscillation rheometry on the inhibition of platelets with cytochalasin E and monoclonal antibodies towards GPIIb/IIIa. Biosensors and Bioelectronics. 17, (2002) 761-/771.

https://doi.org/10.1016/S0956-5663(02)00049-0

23. Hansson K. M., Tengvall P., Lundstrom I., Ranby M., Lindahl T. L. Surface plasmon resonance and free oscillation rheometry in combination: a useful approach for studies on haemostasis and interactions between whole blood and artificial surfaces. Biosensors and Bioelectronics. 17, (2002) 747-/759.

https://doi.org/10.1016/S0956-5663(02)00048-9

24. Hansson K. M., Johansen K., Wettero J., Klenkar G., Benesch J., Lundstrom I., Lindahl T. L., Tengvall P. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosensors and Bioelectronics. 23, (2007) 261-268.

https://doi.org/10.1016/j.bios.2007.04.009

25. Johansen K, Wetterö J, Klenkar G, Benesch J, Lundström I, Lindahl T.L., Tengvall P. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial conditions. Biosens. Bioelectron. 23(2), (2007) 261-268.

https://doi.org/10.1016/j.bios.2007.04.009

26. Quinn J. G., O'Neill S., Doyle A., McAtamney C., Diamond D., MacCraith B. D., O'Kennedy R. Development and Application of Surface Plasmon Resonance-Based Biosensors for the Detection of Cell-Ligand Interactions.Analytical Biochemistry. 281, (2000) 135-143.

https://doi.org/10.1006/abio.2000.4564

27. Baoxia Li, Juan Chen, Mian Long Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique. Analytical Biochemistry. 377, (2008) 195-201.

https://doi.org/10.1016/j.ab.2008.03.030

28. Gridina N. Ya. Utilizing SPR as a novel technique to measure cell aggregation for ketamine treated brain gliomas cancer and oncology research. Canc Onc. 1(1), (2013) 1-5.

https://doi.org/10.13189/cor.2013.010101

29. Gridina N., Dorozinsky G., Khristosenko R., Maslov V., Samoylov A., Ushenin Yu., Shirshov Yu. Surface Plasmon Resonance Biosensor. Sensors & Transducer., 149(2), (2013) 60-68.

30. Chegel V., Shirshov Yu., Avilov S., Demchenko M., Mustafaev M. A novel aldehyde dextran sulfonate matrix for affinity biosensors Author links open overlay panel. Journal of Biochemical and Biophysical Methods. 50, Issues 2-3, (2002) 201-216.

https://doi.org/10.1016/S0165-022X(01)00197-X

31. Kabashin A. V., Patskovsky S., Grigorenko A. N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Optics Express. Vol. 17, No. 23, (2009) 21191.

https://doi.org/10.1364/OE.17.021191

32. Ekgasit S., Tangcharoenbumrungsuk A., Yu F., Baba A., Knoll W. Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics. Sensors and Actuators. B 105, (2005) 532-541.

https://doi.org/10.1016/j.snb.2004.07.015

33. Shirshov Yu. M., Kostyukevych K. V., Khrystosenko R. V., Samoylov A. V., Ushenin Yu. V., Gridina N. Ya.Analysis of forming blood elements using surface plasmon-polariton resonance model of transition layer.Optoelectron. Semicond. Tech. 55, (2020) 136-150.

https://doi.org/10.15407/iopt.2020.55.136

34. Douglas B. Lebedeva T., Chandrasekaran N., Hayes V., Massefski W., Rustem I., Rauova L., Thomas J., Weisel W. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. v 123, No 10, (2014) 1596-1603.

https://doi.org/10.1182/blood-2013-08-523860

35. http://www.res-tec.de.

36. Beketov G. V., Shirshov Yu. M., Shynkarenko O. V., Chegel V. I. Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters. Sensors and Actuators B. 48, (1998) 432-438.

https://doi.org/10.1016/S0925-4005(98)00081-1

37. Posudievsky O. Yu., Samoylov A. V., Surovtseva E. R., Khristosenko R. V., Kukla A. L., Shirshov Yu. M. Extraction of optical constants of polyaniline thin films by surface plasmon resonance. Thin Solid Films. 516, (2008) 6104-6109.

https://doi.org/10.1016/j.tsf.2007.11.010

38. Samoylov A. V., Mirsky V. M., Hao Q., Swart C., Shirshov Yu. M., Wolfbeis O. S. Nanometer-thick SPR sensor for gaseous HCl. Sensors and Actuators B. 106, (2005) 369-372.

https://doi.org/10.1016/j.snb.2004.08.029

39. Kostyukevych K.V., Shirshov Yu.M., Khristosenko R.V., Samoylov A.V., Ushenin Yu.V., Kostyukevych S.A., Koptiukh A.A. Angular spectrum peculiarities of surface plasmon-polariton resonance under investigation of latex water suspension in the Kretschmann geometry. Optoelectron. Semicond. Tech. 53, (2018) 220- 239.

https://doi.org/10.15407/jopt.2018.53.220

40. Johnson P. B., Christy V. Optical constatnts of the noble metals. Phys. Rev.B. vol.8, No12, (1972) 125-134.

https://doi.org/10.1103/PhysRevB.6.4370

41. Beketov G. V., Klimov O. S., Matyash I. E., Oberemok E. А., Rudenko S. P., Savenkov S. M., Samoylov a. V., Serdega B. K., Ushenin Yu. V., Shirshov Yu. M. . Physical bases of polarimetry of high informative ability / Edited by B.K. Hearts. - Kyiv: NTUU "KPI" VP VPK "Polytechnic", 2013. - 249 p. ISBN 978-966-622-608-5.

42. James H. Georgiadis G. Temperature-Dependent Refractive Index Determination from Critical Angle Measurements: Implications for Quantitative SPR Sensing. Anal. Chem. 71, (1999) 4392-4396.

https://doi.org/10.1021/ac990125q

43. Heller W. Remarks on refractive index mixture rules. The Journal of Physical Chemistry. 69(4), (1966) 1123-1129.

https://doi.org/10.1021/j100888a006

44. Shuying Cheng H. Y., Shen G., Zhang a C.H., Huang X. J. Measurement of the refractive index of biotissue at four laser wavelengths. Proceedings of SPIE. Vol. 4916, (2002 ) 172 - 176.

45. Park Y. K., Yamauchi T., Choi W., Dasari R., Feld M.S. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 34(23), (2009) 3668-3670.

https://doi.org/10.1364/OL.34.003668

46. Zhernovaya O., Sydoruk O., Tuchin V., Douplik A. The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56, (2011) 4013-4021.

https://doi.org/10.1088/0031-9155/56/13/017

47. Wang J., Deng Z., Wang Xi., Ye Q., Zhou W., Mei J., Zhang Ch., Tian J. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region. Biomedical optics express. Vol. 6, No. 7, (2015) 2536-2541.

https://doi.org/10.1364/BOE.6.002536

48. Chaplin H., Molisson P. L. Correction for Plasma Trapped in the Red Cell Column of the Hematocrit. Blood. 7 (12), (1952) 1227-1238.

https://doi.org/10.1182/blood.V7.12.1227.1227

49. Sirs J. Automatic Recording of the Rate of Packing of Erythrocytes in Blood by a Centrifuge. Phys. Med. Biol.VOL. 15, NO. 1, (1970) 9-14.

https://doi.org/10.1088/0031-9155/15/1/302

50. E.Ponder Grune and Stretton Hemolysis and related Phenomena. NY 1948 Waverly press Inc.

51. Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces I.Bernhardt, L.Ivanova, P.Langehanenberg, B.Kemper, G.vonBally.

52. Thomas L. Fabry Mechanism of Erythrocyte Aggregation and Sedimentation. Blood. Vol 70, No 5 (November), (1987) 1572-1576.

https://doi.org/10.1182/blood.V70.5.1572.bloodjournal7051572

53. Multicenter study of an erythro-aggregometer: quality control and standardization L.L. Houbouyan , M. Delamaire, A. Beauchet, M. Gentil, G. Cauchois, A. Taccoen, J.P. Yvert, N. Montredon, M.F. Roudaut , S. Zhao, A. Goguel, G. Potron, M. Boisseau, J.-F. Stoltz.

54. Corry W. D., Meiselman H. J. Deformation of human erythrocytes in a centrifugal field. Biophaysical Journal.vol.21, (1978) 19-34.

https://doi.org/10.1016/S0006-3495(78)85506-4

55. Thomas M. , Stöhr-Liesen M., Schmid-Schönbein H. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science. Nov. 24, Vol. 202, (1978) 894- 896.

https://doi.org/10.1126/science.715448

56. Hoffman J. F., Inoue S. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells. PNAS. vol. 103, (2006) 2971-2976.

https://doi.org/10.1073/pnas.0510884103

57. Mohandas N., Gallagher P. G. Red cell membrane: past, present, and future. Blood. V 11215, (2008) 3939-3948.

https://doi.org/10.1182/blood-2008-07-161166

58. Gajos G., Siniarski A., Natorska J., Ząbczyk M., Siudut J., Malinowski K. P., Gołębiowska R., Rostoff P., Undas A. Polyhedrocytes in blood clots of type 2 diabetic patients with high cardiovascular risk: association with glycemia, oxidative stress and platelet activation. Cardiovascular Diabetology. 17, (2018) 146.

https://doi.org/10.1186/s12933-018-0789-6

59. Cines D. B., Lebedeva T., Nagaswami Ch., Hayes V., Massefski W., Litvinov R. I., Rauova L., Lowery T. J., Weisel W. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. V. 123, No 10, (2014) 1596 - 1603.

https://doi.org/10.1182/blood-2013-08-523860

60. Tutwiler V., Mukhitov A. R., Peshkova A. D., Minh G. L., Khismatullin R. R., Vicksman J., Nagaswami Ch., Litvinov R. I., Weisel J. W. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. NATURE scientific reports. 8, (2018) 17907.

https://doi.org/10.1038/s41598-018-35849-8

61. Gokhin D. S., Fowler V. M. Feisty filaments: actin dynamics in the red blood cell membrane skeleton. Curr Opin Hematol. 23(3), (2016) 206-214.

https://doi.org/10.1097/MOH.0000000000000227

62. Himbert S., Alsop R. J., Rose M., Hertz L., Dhaliwal1 A., Moran-Miraba J. M., Verschoor C. P., Bowdish D. M. E., Kaestner L., Wagner C., Rheinstädter M. C. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes. Nature.Scietific reports. 7, (2017) 39661.

https://doi.org/10.1038/srep39661

Ю. М. Ширшов, К. В. Костюкевич, Р. В. Христосенко, Н. Я. Грідіна, С. А. Костюкевич, Ю. В. Ушенін, А. В. Самойлов

Оптичний контроль межі розподілу між поверхнею золота та зразками клітин крові


Звернено увагу на оптичні властивості межі розподілу між плоскою поверхнею скла чи плівки золота та суспезією клітин крови, що вміщує інформацію щодо форми власне клітин крови – еритроцитів. З метою визначенния товщини перехідного шару між поверхнею та об’емом суспензії було притягнуто порівняння кутів поверхного плазмонного резонансу SPR та повного внутріш-нього відбивання TIR . Ми встановили розрахунковим шляхом, що для двох зовнішніх середовищ з відмінніми показниками заломлення між кутми SPR та TIR існує лінійне співвідношення. Коефіціент нахилу цього співвідношення дозволяє визначити товщину перехідного шару, якщо він є тоншим за 300 нм. Експеримент проведено в геометрії Кретчмана для зразків повної крови 100% гематокриту в нативномуі, а також гемолізованиму станах. Також використано зразки еритроцитів які промито та розбавлено в буферному розчині. Показано, що еритроцити в нативних зразках 100% гематокриту щільно прилягають до золотої поверхні (на відстані 80-100 нм), що свідчить про сильну деформацію клитин які після цетрифугування перебувають в формі поліедро-цитів з низкою плоских ділянок на поверхні. Промивання клітин в буферному розчині та розве-дення призводить до релаксації форми еритроцитів у звичайну дискоцитну форму та віддаляє цитоплазму еритроцита від поверхні завдяки збвльшення радіусу викривлення мембрани.

Ключові слова: поверхневий плазмонний резонанс (ППР), повне внутрішне відбиття (ПВВ), показник заломлення, еритроцити, гематокрит.