https://doi.org/10.15407/iopt.2021.56.005

Optoelectron. Semicond. Tech. 56, 5-26 (2021)

A. V. Samoylov


Trends in the development of sensor devices based on surface plasmon resonance (Review)


Trends in the development of modern sensory devices based on surface plasmon resonance (SPR) are considered. The basic principles of construction of SPR sensor are given. For excitation of surface plasmons on the surface of sensitive elements of biosensory, a prism of total internal reflection is used or a dielectric substrate are used. A thin (dozens nm) film of high-conductive metal (mainly gold or silver) is applied to the working surface of the prisms or dielectric substrate. In a typical observation experiment, SPR is measured dependence on the angle of increasing light intensity, reflected by the resonance sensitive surface of the prism (chip).

The optical schemes and principles of work of various SPR sensors are considered:

- SPR Sensors with angular modulation, which are the most commonly used method based on the corner registration, in which the SPR occurs. The surface of the metal film is irradiated by monochromatic light and scans on a certain range of angles. There is a kind of SPR sensors with angular modulation, in which there is no mechanical scan of the angle of fall. Such sensors are entirely necessary for excitation of PPRs a set of angles is obtained due to a divergent or convergent light beam.

- PPR sensors with a wavelength modulation is based on fixing an angle of falling light at a certain value and modulation of the wavelength of the incident light. Excitation of surface plasmons leads to a characteristic failure in the spectrum of reflected radiation.

- Phase sensitive SPR sensors in which a change in the phase of the light wave associated with the surface plasma is measured on one corner of the fall and the wavelength of the light wave and is used as the output signal.

- SPR imaging sensors in which the Technology of SPR imaging (SPRi) combines the sensitivity of the SPR with spatial image capabilities. The SPRI circuit uses as a fixed angle (as a rule, a slightly left angle of the SPR) and a fixed wavelength to measure changes in the reflection ability (Δ% R) that occur when the curve of the SPR is shifted due to the change in the refractive index above the surface of the sensor element.

- SPR imaging sensors polarization contrast. In order to improve the quality of high-performance SPR imaging sensors in terms of sensitivity and resolution, the method of polarization contrast is used

Disadvantages and advantages of SPR sensors are constructed with different principles are considered. The design and prospect of the use of achromatic and suburchast wave plates in the PPR imaging sensors with polarization contrast are considered.

Keywords: sensory devices, surface plasmon resonance, angular modulation, amplitude modulation, SPR imaging sensors.

References

1. Dorozhynska G.V., Lyapin O.M., Dorozhynskij G.V., Maslov V.P. Stan ta problemy rozrobky chutlivih elementiv priladiv na osnovi yavisha poverhnevogo plazmonnogo rezonansu. Optoelektronika i poluprovodnikovaya tekhnika. 2017. № 52.S. 37-49.

2. D'Orazio P. Biosensors in clinical chemistry-2011 update. Clin. Chim. Acta.2011. 412. Р.1749-1761. [

https://doi.org/10.1016/j.cca.2011.06.025

3. McWhirter A., Wahlstrom L., Tudos, A.J., Schasfoort R.B.M. Handbook of Surface Plasmon Resonance. 2008. RSC: Cambridge, UK.

4. Justino C.I.L., Rocha-Santos T.A., Duarte A.C., Rocha-Santos T.A. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 2010. 29.Р. 1172-1183.

https://doi.org/10.1016/j.trac.2010.07.008

5. Nina Gridina, Gleb Dorozinsky, Roman Khristosenko, Vladimir Maslov, Anton Samoylov, Yury Ushenin, Yury Shirshov. Surface Plasmon Resonance Biosensor, Sensors and Transducers. 2013.149. Р.60-68.

6. Erickson D., Mandal S., Yang A.H.J., Cordovez B. Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid. Nanofluid. 2008. 4. Р.33-52.

https://doi.org/10.1007/s10404-007-0198-8

7. Nguyen H., Park J., Kang S., Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors. 2015. 15. Р.10481-10510.

https://doi.org/10.3390/s150510481

8. Patching S.G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta Biomembr. 2014. 1838. Р.43-55.

https://doi.org/10.1016/j.bbamem.2013.04.028

9. Helmerhorst E., Chandler D.J., Nussio M., Mamotte C.D. Real-Time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clin. Biochem. Rev. 2012. 33.Р. 161-173.

10. Yanase Y., Hiragun T., Yanase T., Kawaguchi T., Ishii K., Hide M. Application of spr imaging sensor for detection of individual living cell reactions and clinical diagnosis of ype I allergy. Allergol. Int. 2013. 62. Р.163-169.

https://doi.org/10.2332/allergolint.12-RA-0505

11. Yanase Y., Hiragun T., Ishii K., Kawaguchi T., Yanase, T., Kawai M., Sakamoto K., Hide M. Surface plasmon resonance for cell-based clinical diagnosis. Sensors. 2014. 14. Р.4948-4959.

https://doi.org/10.3390/s140304948

12. Kihm K.D., Cheon S., Park J.S., Kim H.J., Lee J.S., Kim I.T., Yi H.J. Surface plasmon resonance (SPR) reflectance imaging: Far-Field recognition of near-field phenomena. Opt. Lasers Eng. 2012. 50. Р.64-73.

https://doi.org/10.1016/j.optlaseng.2011.07.003

13. Singh P. SPR biosensors: Historical perspectives and current challenges. Sens. Actuators B Chem. 2016. 229. Р.110-130.

https://doi.org/10.1016/j.snb.2016.01.118

14. Sposib diagnostiki lejkozu velikoyi rogatoyi hudobi: pat.111270 Ukrayina: MPK G01 N 33/553 ( 2006.01).№a201410363;zayavl.22.09.14;opubl.11.04.16,Byul. №7.5 s.

15. Maslov V.P., Dorozinsky G.V., Khrystosenko R.V., Samoylov A.V., Dorozinska H.V., Konchenko A.V. Surface plasmon resonance - a promising method for estimating the quality of motor oil. Trans & Motauto World Journal. 2017.1.Р. 41-44.

16. Sposib kontrolyu «starinnya» motornoyi olivi: pat. 118597 Ukrayina, MPK G01 N 15/02( 2006.01). №u201702941; zayavl.28.03.17;opubl.10.08.17, Byul. №15.5 s.

17. Wang X., Zhan S., Huang Z., Hong X. Review: Advances and applications of surface plasmon resonance biosensing instrumentation. Instrum. Sci. Technol.2013. 41. Р.574-607.

https://doi.org/10.1080/10739149.2013.807822

18. Spoto G., Minunni M. Surface plasmon resonance imaging: What next? J. Phys. Chem. Lett. 2012. 3. Р.2682-2691.

https://doi.org/10.1021/jz301053n

19. Willets K.A., Duyne R.P.V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007. 58.Р. 267-297.

https://doi.org/10.1146/annurev.physchem.58.032806.104607

20. Dorozhinskij G.V., Samojlov A.V., Kozak O.I. Zastosuvannya termokompensaciyi dlya vdoskonalennya priladu na osnovi yavisha poverhnevogo plazmonnogo rezonansu. Zbirnik tez. Konferenciya molodih vchenih z fiziki napivprovidnikiv «LAShKAROVSKI ChITANNYa - 2016»( Kiyiv, 6-8 kvitnya 2016). Kiyiv, 2016. S. 110.

21. Dorozinsky G., Maslov V., Samoylov A., Ushenin Yu. Reducing measurement uncertainty of instruments based on the phenomenon of surface plasmon resonance. American Journal of Optics and Photonics.2013. 1, №3.P.17-22.

https://doi.org/10.11648/j.ajop.20130103.12

22. Kretschmann E., Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung. 1968. 23A.Р. 2135-2136.

https://doi.org/10.1515/zna-1968-1247

23. Dmitruk N.L., Litovchenko V.G., Strizhevskij V.L. Poverhnostnye polyaritony v poluprovodnikah i dielektrikah. Kiyiv: Naukova dumka, 1989.

24. Kretschmann E. Die Bestimmung optischer Konstanten von Metallen durch An-regung von Oberflächenplasmaschwingungen. Z. Physik. 1971. 241. P. 313-324.

https://doi.org/10.1007/BF01395428

25. Prilad dlya analizu biohimichnih seredovish: pat. 110131 Ukrayina:MPK G01 N 15/02( 2006.01).№u 201603382;zayavl.01.04.16;opubl.25.09.16,Byul. 18.8 s.

26. Sposib doslidzhennya biomolekulyarnih ta biohimichnih reakcij v ridkih ta gazopodibnih seredovishah z vikoristannyam yavisha poverhnevogo plazmonnogo rezonansu: pat. 77080 Ukrayina: MPK G01N 21/56 (2006.01). №u 201209152; zayavl.25.07.12;opubl.25.01.13,Byul.№2. 4s.

27. Kuzmin E.V., Dyukin R.V., Shandybina G.D. Sensor poverhnostnogo plazmonnogo rezonansa dlya ekspress-analiza. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie. 2017. 60, № 4. S. 375-380.

https://doi.org/10.17586/0021-3454-2017-60-4-375-380

28. Xia Liu, Daqian Song, Qinglin Zhang, Yuan Tian, Lan Ding, Hanqi Zhang. Wavelength-modulation surface plasmon resonance sensor. TrAC Trends in Analytical Chemistry. 2005. 24, Issue 10. P. 887-893.

https://doi.org/10.1016/j.trac.2005.05.010

29. Perrotton C., Javahiraly N., Slaman M., Dam B, Meyrueis P. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing. Opt Express. 2011 Nov 7;19 Suppl 6:A1175-83. doi: 10.1364/OE.19.0A1175.

https://doi.org/10.1364/OE.19.0A1175

30. Wan Mohd Azwady Wan Ahamad, Dzaraini Kamarun, Mohd Kamil Abd Rahman, Mohamad Shukri Kamarudin. Modular Surface Plasmon Resonance (SPR) Biosensor Based on Wavelength Modulation. Advanced Materials Research. 1107.Р. 699-705.

https://doi.org/10.4028/www.scientific.net/AMR.1107.699

31. Xia Liu, Daqian Song, Qinglin Zhang, Yuan Tian, Lan Ding, Hanqi Zhang. Wavelength-modulation surfaceplasmon resonance sensor. Trends in Analytical Chemistry. 2005. 24, No. 10.

https://doi.org/10.1016/j.trac.2005.05.010

32. Jir Homola, Jakub Dostalek, Shengfu Chen, Avraham Rasooly, Shaoyi Jiang, Sinclair S. Yee. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology. 2002.75. Р. 61-69.

https://doi.org/10.1016/S0168-1605(02)00010-7

33. Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews.2008. No108. Р. 462-493.

https://doi.org/10.1021/cr068107d

34. Kabashin A.V., Patskovsky S., Grigorenko A.N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express. 2009.17.Р.21191-21204. DOI: 10.1364/OE.17.021191.

https://doi.org/10.1364/OE.17.021191

35. Kashif M., Bakar A., Arsad N., Shaari S. Development of phase detection schemes based on surface plasmon resonance using interferometry. Sensors. 2014.14.Р.15914-15938. DOI: 10.3390/s140915914.

https://doi.org/10.3390/s140915914

36. Kabashin A.V., Evans P., Pastkovsky S., Hendren W., Wurtz G.A., Atkinson R., Pollard R., Podolskiy V.A., Zayats A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009.8.Р.867-871. DOI: 10.1038/nmat2546.

https://doi.org/10.1038/nmat2546

37. Su Y.D., Chen S.J., Yeh T.L. Common-Path phase-shift interferometry surface plasmon resonance imaging system. Opt. Lett. 2005.30.Р.1488-1490. DOI: 10.1364/OL.30.001488.

https://doi.org/10.1364/OL.30.001488

38. Lepage D., Carrier D., Jiménez A., Beauvais J., Dubowski J.J. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing. Nanoscale Res. Lett. 2011.6.Р.1-7.

https://doi.org/10.1186/1556-276X-6-388

39. Huang Y., Ho H., Wu S., Kong S. Detecting phase shifts in surface plasmon resonance: A review. Adv. Opt. Technol. 2012.Р.471-957.

https://doi.org/10.1155/2012/471957

40. Yu X., Ding X., Liu F., Deng Y. A novel surface plasmon resonance imaging interferometry for protein array detection. Sens. Actuators B Chem. 2008.130.Р.52-58.

https://doi.org/10.1016/j.snb.2007.07.106

41. Markowicz P.P., Law W.C., Baev A., Prasad P.N., Patskovsky S., Kabashin A.V. Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt. Express. 2007.15.Р.1745-1754.

https://doi.org/10.1364/OE.15.001745

42. Halpern A.R., Chen Y., Corn R.M., Kim D. Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays. Anal. Chem. 2011.83.Р.2801-2806.

https://doi.org/10.1021/ac200157p

43. Ran B., Lipson S.G. Comparison between sensitivities of phase and intensity detection in surface plasmon resonance. Opt. Express. 2006.14.Р.5641-5650.

https://doi.org/10.1364/OE.14.005641

44. Yuhki Yanase, Takaaki Hiragun, Tetsuji Yanase, Tomoko Kawaguchi, Kaori Ishii, Michihiro Hide. Application of SPR Imaging Sensor for Detection of Individual Living Cell Reactions and Clinical Diagnosis of Type I Allergy. Allergology International. 2013. 62, Issue 2. P. 163-169.

https://doi.org/10.2332/allergolint.12-RA-0505

45. Jordan C.E, Frutos A.G, Thiel A.J, Corn R.M. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 1997.69.Р.4939-5207.

https://doi.org/10.1021/ac9709763

46. Kihm K.D., Cheon S., Park J.S., Kim H.J., Lee J.S., Kim I.T., Yi H.J. Surface plasmon resonance (SPR) reflectance imaging: Far-field recognition of near-field phenomena. Opt Lasers Eng. 2012.50.Р.64-73.

https://doi.org/10.1016/j.optlaseng.2011.07.003

47. Ruemmele J.A., Golden M.S., Gao Y., Cornelius E.M., Anderson M.E., Postelnicu L., Georgiadis R.M. Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning. Anal. Chem.2008. 80.Р.4752-4756.

https://doi.org/10.1021/ac702544q

48. Zhou C., Jin W., Zhang Y., Yang M.C., Xiang L.C., Wu Z.Y., Jin Q.H., Mu Y. An angle-scanning surface plasmon resonance imaging device for detection of mismatched bases in caspase-3 DNA. Anal. Methods. 2013. 5.Р.2369-2373.

https://doi.org/10.1039/c3ay26602h

49. Wong C.L., Ho H.P., Yu T.T., Suen Y.K., Chow W.Y., Wu S.Y, Law W.C., Yuan W., Li W.J., Kong S.K., Lin C. Two-dimensional biosen- sor arrays based on surface plasmon resonance phase imaging. Appl. Opt. 2007.46.Р.2325-2332.

https://doi.org/10.1364/AO.46.002325

50. Ho H.P., Wong C.L., Wu S.Y., Law W.C., Lin C., Kong S.K. Optical sensing devices with SPR sensors based on differential phase interrogation and measuring method using the same. 2007. Patent US2007/0008546 A1.

51. Nikitin P.I., Grigorenko A.N., Beloglazov A.A., Valeiko M.V., Savchuk A.I., Savchuk O.A., Steiner G., Kuhne C., Huebner A., Salzer R. Surface plasmon resonance interferometry for micro-array biosens- ing. Sensors Actuators A Phys. 2000. 85(1-3).Р.189-193.

https://doi.org/10.1016/S0924-4247(00)00386-1

52. Wong C.L., Ho H.P., Suen Y.K., Yin C.W., Li W.J., Kong S.K., Lin C. Biosensor arrays based on surface plasmon resonance phase imaging. International Symposium on Biophotonics, Nanophotonics and Metamaterials, Hangzhou, China. Oct. 16-18.2006.Р. 102-105.

https://doi.org/10.1109/METAMAT.2006.335007

53. Wei Dong, Kai Pang, Qiaohui Luo, Zihao Huang, Xiaoping Wang, Limin Tong. Improved polarization contrast method for surface plasmon resonance imaging sensors by inert background gold film extinction. Optics Communications. 2015. 346.Р. 1-9.

https://doi.org/10.1016/j.optcom.2015.01.063

54. Yi Sun, Ya Gao, Tingting Yang, Xu Ma, Xiaoping Wang. Sensitivity enhancement of surface plasmon resonance imaging sensor with structural parameter optimization based on polarization contrast modulation. Optical Manipulation Conference. 2018. Proceedings Volume 10712.

https://doi.org/10.1117/12.2318588

55. Y. H. Huang, H. P. Ho, S. Y. Wu,and S. K. Kong. Detecting Phase Shifts in Surface Plasmon Resonance: A Review. Advances in Optical Technologies. 2012, Article ID 471957. 12 pages.

https://doi.org/10.1155/2012/471957

56. M. Piliarik, J. Homola, S.P.R. Self-referencing, imaging for most demanding high-throughput screening applications. Sens. Actuators B - Chem. 2008.134. Р.353-355.

https://doi.org/10.1016/j.snb.2008.06.011

57. J. Homola, S.S. Yee. Novel polarization control scheme for spectral surface plasmon resonance sensors. Sens. Actuators B - Chem. 1998.51.Р. 331-339.

https://doi.org/10.1016/S0925-4005(98)00208-1

58. V.S. Samojlov, A.V. Samojlov. Volnovye plastiny. Kiyiv, 2015. 76 s.

59. Samojlov A.V. Relaksaciya opticheskih anizotropnyh svojstv odnoosno vytyanutogo polimetil-metakrilata s techeniem vremeni.Strukturna relaksaciya u tverdih tilah. Zbirnik naukovih prac. Vinnicya: FOP «Kostyuk N.P.». 2015. S.68-69.

60. Samoylov A.V. Optimization of the constraction of superachromaic quarter waveplates. XIII International conference "Electronics and applied physics".2017. October 24-27. Kyiv, Ukraine. P.229-230.

61. A.V.Samoylov, V.S.Samoylov, A.P.Vidmachenko, A.V.Perekhod. Achromatic and super-achromatic zero-order wave plates. Journal of Quantitative Spectroscopy & Relative Transfer. 2004.№88.Р.319-325.

https://doi.org/10.1016/j.jqsrt.2003.12.034

62. A.Melninkaitis, D.Mikšys, M.Maciulevičius, V.Sirutkaitis, G.Šlekys. A.V.Samoylov. Laser-induced damage thresholds of starched PMMA waveplates. Proc. SPIE 6403, Laser-Induced Damage in Optical Materials. 2006. 640325. DOI:10.1117/12.696271.

https://doi.org/10.1117/12.696271

63. A. V. Samoĭlov, V. S. Samoĭlov, A. S. Klimov, E. A. Oberemok. Properties of multicomponent achromatic and superachromatic zero-order waveplates. Journal of Optical Technology. 2009.76. Issue 5.Р. 312-315.

https://doi.org/10.1364/JOT.76.000312

64. V.A.Kucherov. Mnogokomponentnye simmetrichnye ahromaticheskie fazovye plastinki. 1.Rasshirenie pancharatnamovskoj sistemy na sluchaj proizvolnogo chisla komponent.Fotometricheskie i polyarimetricheskie issledovaniya nebesnyh tel. Naukova dumka. 1985.S.152-160.

65. V.A. Kucherov, Mnogokomponentnye simmetrichnye ahromaticheskie fazovye plastinki. 2.Sostavnye fazosdvigateli s nebolshim chislom elementov. Kinematika i fizika nebesnyh tel. 1986. 2, №1. S.82-87.

66. V.A. Kucherov. Mnogokomponentnye simmetrichnye ahromaticheskie fazovye plastinki. 3.Teoreticheskoe modelirovanie opticheskih svojstv 10-elementnoj kvarcevoj fazosdvigayushej sistemy. Kinematika i fizika nebesnyh tel.1986.2, №2. S.59-66.

А.В. Самойлов

Тенденції розвитку сенсорних приладів на основі поверхневого плазмонного резонансу

Розглянуто тенденції розвитку сучасних сенсорних приладів на основі поверхневого плазмонного резонансу (ППР). Наведено основні принципи побудови ППР-сенсорів. Розглянуто оптичні схеми та принципи роботи ППР-сенсорів з механічною модуляцією кута, з розбіжним або збіжним світловим пучком, ППР-сенсори з амплітудною модуляцією, ППР-сенсори з модуляцією довжини хвилі, фазочутливі ППР-сенсори, панорамні ППР-імейджінг сенсори, ППР-імейджінг сенсори з поляризаційним контрастом. Розглянуто недоліки та переваги сенсорів ППР, побудованих за різними принципами. Розглянута конструкція та перспектива використання ахроматичних та суперахроматичних хвильових пластин в ППР-імейджінг сенсорах з поляризаційним контрастом.

Ключові слова: сенсорні прилади, поверхневий плазмонний резонанс, кутова модуляція, амплітудна модуляція, ППР-імейджінг сенсори.