1. I. Charnovych S., Dmitruk N., Voynarovych I., Yurkovich N., Kokenyesi S. Plasmon-assisted transformations in metal-amorphous chalcogenide light-sensitive nanostructures. Plasmonics. 2012. 7. P. 341–345. DOI 10.1007/s11468-011-9312-6.
2. Trunov M.L., Lytvyn P.M., Nagy P.M., Csik A., Rubish V. M., Kökényesi S. Light-induced mass transport in amorphous chalcogenides: Toward surface plasmon-assisted nanolithography and near-fieldnanoimaging, Phys. Status Solidi B. 2014. 251. P. 1354–1362. https://doi.org/10.1002/pssb.201350296.
3. Csarnovics I., Veres M., Nemec P., Molnar S., Kikinyesi S. Surface plasmon enhanced light-induced changes in Ge–Se amorphous chalcogenide – gold nanostructures. J. Non-Cryst. Solids. 2021. 553. 120491. https://doi.org/10.1016/j.jnoncrysol.2020.120491.
4. Alkhalil G., Burunkova J.A., Csík A., Donczo B., Szarka M., Petrik P, Kokenyesi S., Saadaldin N. Photoinduced structural transformations of Au-As2S3 nanocomposite impregnated in silica porous glass matrix. J. Non-Cryst. Solids. 2023. 610. 122324. https://doi.org/10.1016/j.jnoncrysol.2023.122324.
5. Indutnyi I.Z., Mynko V.I., Sopinskyy N.V., Lytvyn P.M. Plasmon-stimulated photodoping in the thin-layer As2S3–Ag structure. Opt. Spectrosc. 2019. 127. P. 938–942,
https://doi.org/10.1134/S0030400X19110109.
6. Indutnyi I.Z., Mynko V.I., Sopinskyy M.V., Lytvyn P.M. Impact of surface plasmonpolaritons on silver photodiffusion into As2S3 film. Plasmonics. 2021. 16. Р.181–188.
https://doi.org/10.1007/s11468-020-01275-8.
7. Indutnyi I.Z., Mynko V.I., Sopinskyy M.V., Dan’ko V.A., Lytvyn P.M. The effect of surface plasmon-polaritons on the photostimulated diffusion in light-sensitive Ag–As4Ge30S66 structures. Semicond. Phys. Quantum Electron. Optoelectron. 2021. 24. P. 436–443, https://doi.org/10.15407/spqeo24.04.436.
8. Indutnyi I., Mynko V., Sopinskyy M., Lytvyn P. Plasmon-enhanced photostimulated diffusion in a thin-layer Ag–GeSe2 structure. J. Non-Cryst. Solids. 2023. 618. 122513. https://doi.org/10.1016/j.jnoncrysol.2023.122513.
9. Kostyshin M.T., Michailovskaya E.V., Romanenko P.F. On the effect of photographic sensitivity of the thin semiconductor layers deposited on metal substrates. Sov. Phys. Solid State. 1966. 8, № 2. P. 451–452.
10. Indutnyi I.Z., Kostyshin M.T., Kasiarum O.P., Min’ko V.I., Mikhailovskaya E.V., Romanenko P.F. Photostimulated Interactions in Metal-Semiconductor Structures. Kiev: Naukova Dumka (in Russian), 1992. 240 р.
11. Kolobov A.V., Elliott S.R. Photodoping of amorphous chalcogenides by metals. Adv. Phys. 1991. 40. P. 625–684. https://doi.org/10.1080/00018739100101532.
12. Dan’ko V.A., Indutnyi I.Z., Min’ko V.I., Shepelyavyi P.E. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectron. Instrument. Proc. 2010. 46. P. 483–490. https://doi.org/10.3103/S8756699011050116.
13. Kandy A.K., Figueiredo C.S.M., Merino M.F. et al. Direct laser writing of computer-generated holograms by photodissolution of silver in arsenic trisulfide. Optics. 2023. 4. P. 138–145. https://doi.org/10.3390/opt4010010.
14. Sarwat S.G., Moraitis T., Wright C.D., Bhaskaran H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 2022. 13. P. 2247. https://doi.org/10.1038/s41467-022-29870-9.
15. Sakaguchi Y., Hanashima T., Simon A.A.A., Mitkova M. Silver photodiffusion into amorphous Ge chalcogenides. Excitation photon energy dependence of the kinetics probed by neutron reflectivity. Eur. Phys. J. Appl. Phys. 2020. 90. P. 30101. https://doi.org/10.1051/epjap/2020190368.
16. Smiles M.J., Shalvey T.P., Thomas L. et al. GeSe photovoltaics: Doping, interfacial layer and devices. Faraday Discuss. 2022. 239. P. 250–262. https://doi.org/10.1039/D2FD00048B.
17. Liu Q.M., Zhao X.J., Tanaka K., Nazaraki A., Hirao K., Gan F.X. Second-harmonic generation in Ge–As–S glasses by electron beam irradiation and analysis of the poling mechanism. Opt. Commun. 2001. 198. P. 187192. https://doi.org/10.1016/S0030-4018(01)01483-3.
18. Harbold J.M., Ilday F.O., Wise F.W., Aitken B.G. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching. IEEE Photon. Technol. Lett. 2002. 14. P. 822824.
doi: 10.1109/LPT.2002.1003105.
19. Dan’ko V., Dmitruk M., Indutnyi I., Mamykin S., Myn’ko V., Lukaniuk M., Shepeliavyi P., Lytvyn P. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. 497. https://doi.org/10.1186/s11671-015-1203-x.
20. Todorov R., Petkov K. Light induced changes in the optical properties of thin As–S–Ge(Bi, Tl) films. J.Optoelectron. Adv. Mater. 2001. 3. P. 311–317.
21. Ding S., Dai S., Cao Z., Liu C., Wu J. Composition dependence of the physical and acousto-optic properties of transparent Ge–As–S chalcogenide glasses. Opt. Mater. 2020. 108. 110175. https://doi.org/10.1016/j.optmat.2020.110175.
22. Indutnyi I.Z., Mamykin S.V., Mynko V.I., Sopinskyy M.V., Korchovyi A.A. Plasmon enhancement of photosensitivity of Ag–chalcogenide glass thin film structures. Semicond. Phys. Quantum. Electron. Optoelectron. 2023. 26. P. 432441. https://doi.org/10.15407/spqeo26.04.432.
23. Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 1978. 72. P. 577–588. https://doi.org/10.1016/0039-6028(78)90371-0.
24. Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag Berlin, Heidelberg, 1988.
25. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008. 108. P. 462−493. https://doi.org/10.1021/cr068107d.
26. Indutnyi I.Z., Stetsun A.I. Determination of the optical constants of thin absorbing films on a slightly absorbing substrate from photometric measurements. Proc. SPIE. 1994. 2113. P. 55–59. https://doi.org/10.1117/12.191967.
27. Zekak A. The Optical Characterization and Kinetics of Ag Photodissolution in Amorphous As-S Films. Ph.D. Thesis, University of Edinburgh, Scotland, UK, 1993.
28. Todorov R., Lalova A., Lozanova V. Optical properties of thin Ag/As-S-Ge films. Bulgarian Chemical Communications. 2015. 47. Special Issue B. P. 40–43.
29. Brongersma M., Halas N., Nordlander P. Plasmon-induced hot carrier science and technology. Nature Nanotech. 2015. 10. P. 25–34. https://doi.org/10.1038/nnano.2014.311.
30. Wu K., Chen J., McBride J.R, Lian T. Efficient hot-electrontransferby a plasmon-induced interfacial charge-transfer transition. Science. 2015. 349.6248. P. 632–635. DOI: 10.1126/science.aac5443.