1. Zi C. Fizika poluprovodnikovyh priborov. M.: Mir, 1984.
2. Roderik E.H. Kontakty metall-poluprovodnik. M.: Radio i svyaz, 1982.
3. Goldberg Yu.A. Omicheskij kontakt metall-poluprovodnik AIIIVV: metody sozdaniya i svojstva. Obzor. FTP. 1984. 28. C.1681-1698.
4. Blank T.V., Goldberg Yu.A. Mehanizm protekaniya toka v omicheskih kontaktah metall-poluprovodnik. Obzor. FTP. 2007.41. S.1281-1308.
5. Behshtedt F., Enderlajn R. Poverhnosti i granicy razdela poluprovodnikov.M.: Mir, 1990.
6. John Bardeen. Surface States and Rectification at a Metal Semi-Conductor Contact. Phys. Rev. 1947. 71. P.717-727.
https://doi.org/10.1103/PhysRev.71.717
7. A. Zur, T.C. McGill, D.L. Smith. Fermi-level position at a semiconductor-metal interface. Phys. Rev. 1983. B28. P.2060-2067.
https://doi.org/10.1103/PhysRevB.28.2060
8. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and I Lindau. New and unified model for Schottky barrier and IIIV insulator interface states formation. J. Vac. Sci. Techn.1979. 16. P.1422-1433.
https://doi.org/10.1116/1.570215
9. Heine V. Theory of Surface States. Phys. Rev. 1965. 138. P.1689-1696.
https://doi.org/10.1103/PhysRev.138.A1689
10. Tersoff J. Schottky barriers and semiconductor band structures. Phys.Rev. 1985. B32. P.6968-6971.
https://doi.org/10.1103/PhysRevB.32.6968
11. H. Hasegawa. Unified disorder induced gap state model for insulator semiconductor and metal semiconductor interfaces. J. Vac. Sci. Techn. 1986. B4. P.1130-1138.
https://doi.org/10.1116/1.583556
12. Woodall J.M., Freeouf J.L. GaAs metallization: Some problems and trends. J. Vac. Sci. Techn. 1981. 19. P.79-84.
https://doi.org/10.1116/1.571150
13. Kurtin S., McGill T.C., Mead C.A. Fundamental transition in the electronic nature of solids. Phys. Rev. Lett. 1969. 22. P.1433-1436.
https://doi.org/10.1103/PhysRevLett.22.1433
14. Cowley A.M., Sze S.M. Surface states and barrier height of metal-semiconductor system. J. Appl. Phys.1965. 36. P.3212-3220.
https://doi.org/10.1063/1.1702952
15. Baca A.G., Ren F., Zolper J.C., Briggs R.D., Pearton S.J. A survey of ohmic contacts to III-V compound semiconductors. Thin Solid Films.1997. 308. P.599-605.
https://doi.org/10.1016/S0040-6090(97)00439-2
16. D. Schroder D. Semiconductot Material and Device Characterization. John Wiley and Sons. 2006.
17. Padovani F.A., Stratton R. Field and thermionic-field emission in Schottky barriers. Sol. St. Electron. 1966. 9. P.695-707.
https://doi.org/10.1016/0038-1101(66)90097-9
18. Chor E.F., Zhang D., H. Gong H. et al. Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. J. Appl. Phys. 2000. 87. P.2437-2444.
https://doi.org/10.1063/1.372198
19. Baraskar A., Gossard A.C., Rodwell M. J. W. Lower limits to metal-semiconductor contact resistance: Theoretical models and experimental data. J. Appl. Phys. 2013. 114. P.154516.
https://doi.org/10.1063/1.4826205
20. Landauer B. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development. 1957. 1.P. 223-231.
https://doi.org/10.1147/rd.13.0223
21. Davis G.D., Beck W.A., Byer N.E., Daniels R.R., Margaritondo G.. Deposition of Au overlayers onto cleaved (Hg,Cd)Te surfaces. J. Vac. Sci. Technol. 1984. A2. P.546-550.
https://doi.org/10.1116/1.572442
22. Davis G.D., Byer N.E., Riedel R.A., Margaritondo G. Interactions between cleaved (Hg,Cd)Te surfaces and deposited overlayers of Al and In. J. Appl. Phys.1985. 57. P.1915-1921.
https://doi.org/10.1063/1.335455
23. Davis G.D., Beck W.A., Mo Y.W., Kilday D., Margaritondo G. Interfacial interactions between (HgCd)Te and Ti, an ultrareactive metal. J. Appl. Phys. 1987.61. P.5191-5193.
https://doi.org/10.1063/1.338299
24. Davis G.D. Overlayer interactions with (HgCd)Te. J. Vac. Sci. Technol.1988. A6. P.1939-1945.
https://doi.org/10.1116/1.575210
25. Davis G.D., Beck W.A., Kelly M.K., et al. Interfacial reactions between (HgCd)Te and intermediate reactivity overlayers. J. Vac. Sci. Technol. 1988. A6. P.2732-2735.
https://doi.org/10.1116/1.575496
26. Friedman D.J., Carey G.P., Lindau I., Spicer W.E. Systematics of metal contacts to Hg 1-x Cd x Te. J. Vac. Sci. Technol. 1987. A5. P.3190-3192.
https://doi.org/10.1116/1.574835
27. Spicer W.E. Metal contacts on Hg 1-x Cd x Te. J. Vac. Sci. Technol.1990. A8. P.1174-1177.
https://doi.org/10.1116/1.576939
28. Wilks S.R., Williams J.R., Williams R.H. In Proc. of the Conf. on Properties of Narrow-Gap Cadmium- Based Compounds, INSPEC, IEE. 1994. A7.1. P.273.
29. S. R. Wilks S.R., J. R. William J.R., R. H. Williams R.H. In Proc. of the Conf. on Properties of Narrow-Gap Cadmium- Based Compounds, INSPEC, IEE. 1994. A7.2. P.280.
30. Bahir G., Adar P., Fastow R. The electrical properties of metal contact Au and Ti on p-type HgCdTe. J. Vac. Sci. Technol. 1991. B9. P.266-272.
https://doi.org/10.1116/1.585605
31. W.E. Spicer, D.J. Friedman, and G.P. Carey. The electrical properties of metallic contacts on Hg 1-x Cd x Te. J. Vac. Sci. Technol. 1988. A6. P.2746-2751.
https://doi.org/10.1116/1.575499
32. W. E. Spicer. Metal contacts on Hg 1-x Cd x Te. J. Vac. Sci. Technol. 1990. A8. P.1174-1177.
https://doi.org/10.1116/1.576939
33. D. J. Friedman, G. P. Carey, I. Lindau, and W. E. Spicer. Overlayer-cation reaction at the Pt/Hg 1-x Cd x Te interface. Phys. Rev. 1987. B35. P.1188-1193.
https://doi.org/10.1103/PhysRevB.35.1188
34. G. P. Carey, D. J. Friedman, A. K. Wahi. C. K. Shih, W. E. Spicer. Use of low temperature to to reduce intermixing at metal: HgCdTe contacts. J. Vac. Sci. Technol. 1988. A6. P.2736-2740.
https://doi.org/10.1116/1.575497
35. V. Krishnamurthy V., A. Simmons A., Helms C.R. Studies of Au '"ohmic"'contacts to p-type Hg 1-x Cd x Te. J. Vac. Sci. Technol. 1990. A8. P.1147-1151.
https://doi.org/10.1116/1.576977
36. Krishnamurthy V., Simmons A., Helms C.R. Oxide interfacial layers in Au ohmic contacts to ptype Hg 1-x Cd x Te. Appl. Phys. Lett. 1990. 56. P.925-927.
https://doi.org/10.1063/1.102627
37. Jones L., Capper P., Quelch M. L.T., M. Brown M. The properties of gold in Bridgman grown Cd x Hg 1-x Te . J. Crystal Growth. 1983. 64. P.417-432.
https://doi.org/10.1016/0022-0248(83)90325-1
38. Nemirovsky Y., Goshenn R. Plasma anodization of Hg 1-x Cd x Te . Appl. Phys.Lett. 1980. 37. P.813-815.
https://doi.org/10.1063/1.92090
39. Mead C.A., Spitzer W.G. Fermi level position at semiconductor surfaces. Phys. Rev. Letter. 1963. 10. P.471-473.
https://doi.org/10.1103/PhysRevLett.10.471
40. Mead C.A., Spitzer W.G. Fermi level position at metal-semiconductor interfaces. Phys. Rev. 1964. 134. 3A. P.А713-А716.
https://doi.org/10.1103/PhysRev.134.A713
41. Korwin-Pawlowski M.L., Heasell E.L. The properties of some metal-InSb surface barrier diodes. Sol. St.Electron. 1975. 18. P.849-852.
https://doi.org/10.1016/0038-1101(75)90006-4
42. Lerach L., Albrecht H. Current transport in forward biased Schottky barriers on low doped n-type InSb. Surf. Sci. 1978. 78. P.531-544.
https://doi.org/10.1016/0039-6028(78)90231-5
43. Hattori K., Yuito M., Amakusa T. Electrical Characteristics of the InSb Schottky Diode. Phys. Stat. Sol. 1982. A73. P.157-164.
https://doi.org/10.1002/pssa.2210730120
44. Cavenett. B.C. Electron-Phonon Interactions in InSb Junctions. Phys Rev. 1972. B5. P.3049-3057.
https://doi.org/10.1103/PhysRevB.5.3049
45. Eftekhari G. Electrical characteristics of metal/n‐InSb contacts with InSb annealed rapidly prior to metal evaporation. J. Vac. Sci. Technol. 1995. B13. P.2134-2136.
https://doi.org/10.1116/1.588089
46. Fan D., Kang N., Ghalamestani S.G., Dick K.A., Xu H.Q. Schottky barrier and contact resistance of InSb nanowire field-effect. Nanotechnol. 2016. 27. P.275204.
https://doi.org/10.1088/0957-4484/27/27/275204
47. Park S.H., Song, T.Y., Kim H.S., Ha J.H., Kim Y.K. Optimization of the fabrication process of InSb Schottky Diodes. J. Korean Phys. Soc. 2008. 53. P.1854-1858.
https://doi.org/10.3938/jkps.53.1854
48. McHarris W.C. InSb as a -ray detector. Nucl. Instr. Meth. 1986. A242. P.373-375.
https://doi.org/10.1016/0168-9002(86)90432-8
49. Kanno I., F. Yoshihara and R. Nouchi, O. Sugiura, T. Nakamura and M. Katagiri. Cryogenic InSb detectors for radiation measurements. Rev. Sci. Instr. 2003. 73. P.2533-2536.
https://doi.org/10.1063/1.1484238
50. Kanno I., Hishiki S., O. Sugiura, et al. InSb cryogenic radiation detectors. Nucl. Instr. Meth. 2006. A568. P.416-420.
https://doi.org/10.1016/j.nima.2006.06.009
51. Liu W.E., Mohne S.E. Condensed phase equilibria in transition metal-In-Sb systems and predictions for thermally stable contacts to InSb. Mat. Sci. Engineer. 2003. B103. P.189-201.
https://doi.org/10.1016/S0921-5107(03)00214-9
52. Milns A., Fojht D. Geteroperehody i perehody metall-poluprovodnik. M.: Mir, 1978.
53. Fomenko V.S. Emissionnye svojstva metallov. Spravochnik. Kiev: Naukova dumka, 1981.
54. Kosyachenko L.A., Mathew X., Motoshuk V.V., Sklyarchuk V.M. Generacionno-rekombinacionnyj mehanizm perenosa zaryada v tonkoplenochnom geteroperehode CdS/CdTe. FTP. 2005. 39. S.569-572.
55. Klevkov Yu.V., Kolosov S.A., Plotnikov A.F. Vliyanie passivacii poverhnosti r-CdTe v (NH4)2Sx na volt-ampernye harakteristiki. FTP. 2006. 40, №9. C.1074-1077.
https://doi.org/10.1134/S1063782606090107
56. Zayachkivskij V.P., Kovalec M.A., Kuchma N.I. i dr. Poluchenie omicheskih kontaktov k obrazcam p-CdTe. PTE. 1984. 5. S.212-213.
57. Korbutiak D.V., Voroshchenko A.T., Sukach A.V. ta in. Sposib vyhotovlennia omichnykh kontaktiv do vysokoomnykh monokrystalichnykh zrazkiv p-CdTe, lehovanykh khlorom: patent №76097 Ukraina: MPK H01L 21/04. №201206556; zaiavl.29.05.12; opubl.25.12.12, Biul. Promyslova vlasnist, №24. C.5.
58. Gu J., Kithara T., Kawakami K et al. Ohmic contact and impurity conduction in p-doped CdTe. J. Appl. Phys. 1975. 46. P.1184-1185.
https://doi.org/10.1063/1.322220
59. Maminski I.A., Orlowski B.A. Schottky barrier formation in CdTe crystal. Surf. Sci. 1986. 168. P. 416-422.
https://doi.org/10.1016/0039-6028(86)90872-1
60. Musa A., Ponpon J.P., Grob J.J. et al. Properties of electroless gold contacts on p-type cadmium telluride. J. Appl. Phys. 1983. 54. P.3260-3268.
https://doi.org/10.1063/1.332435
61. Zelenina N.K., Maslova L.V., Matveev O.A. i dr. Potencialnyj barer v M-P-M strukturah na osnove tellurida kadmiya. FTP. 1984. 18.S.68-71.
62. Bilevich E.O., Sukach A.V., Teterkin V.V. Vliyanie himicheskoj obrabotki poverhnosti na vysotu potencialnogo barera v diodah Shottki Au/p-CdTe. OPT. 2004. Vyp. 39. C.144-151.
63. Bilevich Ye., Sukach A.V. and TetyorkinV. V. Schottky barrier and age effect studies in Au(Cu)/CdTe. Phys. Stat. Sol. C. 2004. 1. Р.317-320.
https://doi.org/10.1002/pssc.200303981
64. Courreges F. G., Fahrenbruh A. L., and Bube R.H. Sputered indium- tin oxide/cadmium telluride junctions and cadmium telluride surfaces. J.Appl. Phys. 1980. 51. P.2175-2183.
https://doi.org/10.1063/1.327892
65. Sukach A.V., Tetorkin V.V., Tkachuk A.I., Voroshchenko A.T. Heterostrukturnyi omichnyi kontakt do polikrystalichnykh shariv telurydu kadmiiu p-typu providnosti: pat. № 91417 Ukraina: MPK H01L 21/04, 31/00. №201311692; zaiavl.03.10.13; opubl.10.07.14, Biul.Promyslova vlasnist, №13.