Optoelectron. Semicond. Tech. 58, 21-45 (2023)

D.V. Korbutyak, O.H. Kosynov, B.N. Kulchytskyi



In recent years, interest in ultra-small (on the order of 2 nm) quantum dots (QDs) has increased. This subset of

CTs includes clusters of magic sizes corresponding to a certain, clearly defined number of atoms. Ultrasmall CTs are

characterized by unique properties - sharp absorption of light and almost complete surface luminescence.

They are promising for a variety of applications, ranging from dye-sensitized solar cells, white light LEDs, and

biomedical sensing due to their controllable electronic structure and large specific surface area. In this review, modern

methods of synthesis of ultrasmall quantum dots are considered: the method of high-temperature organic synthesis, the

method of hot injection, sonochemical synthesis of QDs of magical sizes, etc.

Ultra-small quantum dots are used in solar cells. Due to their large surface-to-volume ratio, compared to

traditional materials, they have a higher absorption efficiency, meaning they can convert a higher percentage of incident

light into electricity. In contrast to the traditional production of solar cells based on organic solutions, which require

high-temperature processing or an inert atmosphere during sputtering, and also have low stability in the open air, a

method of processing solar cells with a solution containing PbS/ZnO is proposed. of nanocrystals in open air and at

room temperature.

Ultrasmall quantum dots are used in medicine due to their unique properties. Overall, they have several

advantages over traditional imaging and sensing tools, such as higher brightness, longer fluorescence lifetimes, and

tunable emission spectra. Current research is focused on increasing the stability and biocompatibility of quantum dots

and developing new methods for their inclusion in various biomedical applications.

Keywords: quantum dot, synthesis, optical absorption, luminescence, medicine, solar energy.


1. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Chem. Phys. 1986. 90. Р.


2. Korbutiak D.V., Kovalenko O.V., Budzuliak S.I., Melnychuk O.V. Nanostruktury napivprovidnykovykh spoluk

А 2 В 6 . Nizhyn. Vydavnytstvo NDU im. M.Hoholia. 2020. 183 s.

3. Murray C.B., Norris D.B. and Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E =

sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993. 115.19. Р. 8706–8715.

4. Hines M.A., Guyot-Sionnest P. Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. J. Phys. Chem. B.

1998. 102. Р. 3655–3657.

5. Talapin D.V., Rogach A.L., Kornowski A., Haase M. and Weller H. Highly Luminescent Monodisperse CdSe

and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine

Mixture. Nano Lett. 2001. 1.4. Р. 207–211.

6. Steigerwald M.L. and Brus L.E. Synthesis, Stabilization, and Electronic Structure of Quantum Semiconductor

Nanoclusters. Annu. Rev. Mater. Sci. 1989. 19. Р. 471–495.

7. Wuister S.F., van Driel F. and Meijerink A. Luminescence and growth of CdTe quantum dots and clusters. Phys.

Chem. Chem. Phys. 2003. 5. Р. 1253–1258.

8. Hässelbarth A., Eychmüller A., Weller H. Detection of shallow electron traps in quantum sized CdS by

fluorescence quenching experiments. Chem. Phys. Lett. 1993. 203. Р. 271–276.

9. Henglein A., Fojtik A. and Weller H. Reactions On Colloidal Semiconductor Particles. Ber. Bunsen-Ges. Phys.

Chem. 1987. 91. Р. 441–446.

10. Van Dijken A., Vanmaekelbergh D. and Meijerink A. Size selective photoetching of nanocrystalline CdS

particles. Chem. Phys. Lett. 1997. 269. Р. 494–499.

11. Van Sark W.G.J.H.M., Frederix P.L.T.M., Van den Heuvel D.J., Gerritsen H.C., Bol A.A., van Lingen J.N.J., de

Donega C. and Meijerink A. Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by

Room-Temperature Time-Resolved Spectroscopy. J. Phys. Chem. B. 2001. 105. Р. 8281–8284.

12. Herron N., Calabrese J.C., Farneth W.E. and Wang Y. Crystal Structure and Optical Properties of

Cd 32 S 14 (SC 6 H 5 ) 36 DMF 4 , a Cluster with a 15 Angstrom CdS Core. Science. 1993. 259. Р. 1426–1428.

13. V. N. Soloviev, A. Eichho, D. Fenske, U. Banin. Molecular Limit of a Bulk Semiconductor: Size Dependence of

the “Band Gap” in CdSe Cluster Molecules. J. Am. Chem. Soc. 122. 2673–2674 (2000).

14. Kastilani R., Bishop B.P., Holmberg V.C. and Pozzo L.D. On-Demand Sonochemical Synthesis of Ultrasmall

and Magic-Size CdSe Quantum Dots in Single-Phase and Emulsion Systems. Langmuir. 2019. 35. 50. Р.


15. Yu Q. and Liu C.Y. Study of Magic-Size-Cluster Mediated Formation of CdS Nanocrystals: Properties of the

Magic-Size Clusters and Mechanism Implication. J. Phys. Chem. C. 2009. 113. P. 12766–12771.

16. Harrell S.M., McBride J.R., Rosenthal S.J. Synthesis of Ultrasmall and Magic-Sized CdSe Nanocrystals. Chem.

Mater. 2013. 25. P. 1199–1210.

17. Jasieniak J., Smith L., Van Embden J., Mulvaney P., Califano M. Re-Examination of the Size-Dependent

Absorption Properties of CdSe Quantum Dots. J. Phys. Chem. C. 2009. 113. P. 19468–19474.

18. Kasuya A., Sivamohan R., Barnakov Y.A., Dmitruk I.M., Nirasawa T., Romanyuk V.R., Kumar V., Mamykin

S.V., Tohji K., Jeyadevan B., et al. Ultra-Stable Nanoparticles of CdSe Revealed from Mass Spectrometry. Nat.

Mater. 2004. 3. P. 99–102.

19. Dobrovolskaia M.A., Aggarwal P., Hall J.B., McNeil S.E. Preclinical studies to understand nanoparticle

interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008.

5.4. P. 487–495.

20. Rosenthal S.J., Chang J.C., Kovtun O., McBride J.R., Tomlinson I.D. Biocompatible quantum dots for biological

applications. Chem. Biol. 2011. 18.1. P.10–24.

21. Azzazy H.M., Mansour M.M., Kazmierczak S.C. From diagnostics to therapy: prospects of quantum dots. Clin.

Biochem. 2007. 40.13–14. P. 917–927.

22. Weng J. and Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr. Med.

Chem. 2006. 13.8. P. 897–909.

23. Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A. Surface coatings determine cytotoxicity and

irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Invest Dermatol. 2007. 127.1. P.


24. Nabiev I., Mitchell S., Davies A., et al. Nonfunctionalized nanocrystals can exploit a cell’s active transport

machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 2007. 7.11. P.


25. Samuel S.P., Santos-Martinez M.J., Medina C., Jain N., Radomski M.W., Prina-Mello A., Volkov Y. CdTe

quantum dots induce activation of human platelets: implications for nanoparticle hemocompatibility. Int. J.

Nanomedicine. 2015. 10. P. 2723–2734.

26. Chen L.-N., Wang J., Li W.-T. and Han H.-Y. Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS

near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem. Commun. 2012. 48.

P. 4971-4973.

27. Smith A.M., Mohs A. M.and Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by

lattice strain. Nat. Nanotechnol. 2008. 4. P. 56–63.

28. Bao H., Wang E.and Dong S. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent

CdTe–Cystine Nanocomposites. Nano-Micro-Small. 2006. 2.4. P. 476–480.

29. Sheng Z., Han H., Hu X. and Chi C. One-step growth of high luminescence CdTe quantum dots with low

cytotoxicity in ambient atmospheric conditions. Dalton Trans. 2010. 39. P. 70177020.

30. Chan W. C. W., Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science. 1998.

281. P. 2016–2018.

31. Larson D. R., Zipfel W. R., Williams R. M., Clark S. W., Bruchez M. P., Wise F. W. Water-Soluble Quantum

Dots for Multiphoton Fluorescence Imaging in Vivo. Science. 2003. 300. P. 1434–1436.

32. Maestro L.M., Jacinto C., Silva U.R., Vetrone F., Capobianco J.A., Jaque D., Solé J.G. CdTe Quantum Dots as

Nanothermometers: Towards Highly Sensitive Thermal Imaging. Nano-Micro-Small. 2011. 7.13. P. 1774–1778.

33. Sun Z., Xie H., Tang S., Yu X.-F., Guo Z., Shao J., Zhang H., Huang H., Wang H. and Chu P.K. Ultrasmall

Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angew.Chem. Int.Ed. 2015. 54.

P.11526 –11530.

34. Fakhroueian Z., Vahabpour R., Assmar M., Massiha A., Zahedi A., Esmaeilzadeh P., Katouzian F., Rezaei S.,

Keyhanvar P. and Dehshiri A.M. ZnO Q-dots as a potent therapeutic nanomedicine for in vitro cytotoxicity

evaluation of mouth KB44, breast MCF7, colon HT29 and HeLa cancer cell lines, mouse ear swelling tests in

vivo and its side effects using the animal model. Artificial Cells, Nanomedicine, and Biotechnology. 2018. 46.2.

P. 1452023.

35. Luther J.M., Law M., Beard M.C., Song Q., Reese M.O., Ellingson R.J., Nozik A.J. Schottky Solar Cells Based

on Colloidal Nanocrystal Films. Nano Lett. 2008. 8.10. P. 3488-3492.

36. Johnston K.W., Pattantyus-Abraham A.G., Clifford J.P., Myrskog S.H., Macneil D.D., Levina L., Sargent E.H.

Schottky-Quantum Dot Photovoltaics for Efficient Infrared Power Conversion. Appl. Phys. Lett. 2008. 92.


37. Ma W., Luther J.M., Zheng H., Wu Y., Alivisatos A.P. Photovoltaic Devices Employing Ternary PbS X Se 1-X

Nanocrystals. Nano Lett. 2009. 9. P. 1699-1703.

38. Choi J.J., Lim Y.F., Santiago-Berrios M.B., Oh M., Hyun B.R., Sung L.F., Bartnik A.C., Goedhart A., Malliaras

G.G., Abruna H.D., et al. PbSe Nanocrystal Excitonic Solar Cells. Nano Lett. 2009. 9. P. 3749-3755.

39. Ma W., Swisher S.L., Ewers T., Engel J., Ferry V.E., Atwater H.A., Alivisatos A.P. Photovoltaic performance of

ultra-small PbSe quantum dots. Lawrence Berkeley National Laboratory. 2011.

40. Dai Q., Wang Y., Li X., Zhang Y., Pellegrino D.J., Zhao M., Zou B., Seo J.T., Wang Y., Yu W.W. Size-

Dependent Composition and Molar Extinction Coefficient of PbSe Semiconductor Nanocrystals. ACS Nano.

2009. 3. P. 1518-1524.

41. Chuang C.-H.M., Brown P.R., Bulović V., Bawendi M.G. Improved performance and stability in quantum dot

solar cells through band alignment engineering. Natur Materials. 2014. 13. P. 796–801.

42. Tang J., Kemp K.W., Hoogland S., Jeong K.S., Liu H., Levina L., Furukawa M., Wang X., Debnath R., Cha D.,

Chou K.W., Fischer A., Amassian A., Asbury J.B. and Sargent E.H. Colloidal-quantum-dot photovoltaics using

atomic-ligand passivation. Nature Mater. 2011. 10. P. 765–771.

43. Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C. and Bulović V. Energy Level

Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano. 2014. 8.6. P.


Д.В. Корбутяк, О.Г.Косинов, Б.Н.Кульчицький




В останнi роки зросла зацiкавленiсть до ультрамалих (порядку 2 нм) квантових

точок (КТ). Ця пiдмножина КТ включає кластери магiчних розмiрiв, що вiдповiдають

певнiй, чiтко визначенiй кiлькостi атомiв. Ультрамалi КТ характеризуються

унiкальними властивостями – рiзким поглинанням свiтла та практично повнiстю

поверхневою люмiнесценцiєю. Вони перспективнi для рiзноманiтних застосувань,

починаючи вiд чутливих до барвникiв сонячних елементiв, свiтлодiодiв бiлого свiтла i

для медико-бiологiчних зондувань, завдяки своїй керованiй електроннiй структурi, а

також великiй питомiй площi поверхнi. В даному огляді розглянуті сучасні методи

синтезу ультрамалих квантових точок: метод високотемпературного органічного

синтезу, метод гарячого вприскування, сонохімічний синтез КТ магічних розмірів

тощо. Описані особливості їхніх оптичних і люмінесцентних властивостей,

зумовлених великим відношенням поверхні до об'єму та великому поперечному

перерізу поглинання світла. Наведені приклади застосування ультрамалих КТ в

медицині та сонячній енергетиці.

Ключові слова: квантова точка, синтез, оптичне поглинання, люмінесценція,

медицина, сонячна енергетика.