https://doi.org/10.15407/iopt.2024.59.016
Optoelectron. Semicond. Tech. 59, 16-27 (2024)
A.V. Fedorenko, V.P. Maslov, H.V. Dorozinska, N.V. Kachur
PROSPECTIVE DIRECTIONS FOR THE IMPLEMENTATION OF SOL-GEL TECHNOLOGY IN THE SYNTHESIS OF ZINC OXIDE NANOSCALE FILMS IN SPR SENSORS
An analysis of the materials used for the manufacture of sensitive elements of PPR sensors was carried out. Zinc oxide is a promising material for optoelectronics. It is heat-resistant, has anti-corrosion and antimicrobial properties, is environmentally safe and cheap, and is also characterized by high biocompatibility. Therefore, this material is attractive for use as an additional nanolayer of a SPR sensor.
The main technologies of applying zinc oxide on a layer of gold are considered. It was determined that the sol-gel technology has a number of advantages, namely: it does not require expensive equipment and special premises, it allows to simultaneously applying a film to a large batch of samples.
Conducted studies on the application of an additional nanolayer of zinc oxide on the SPR-sensitive element revealed that this layer has protective properties - when annealed at 500°C, the gold nanolayer retains its sensory properties and the film does not collect into droplets. That is, this additional layer prevents the surface diffusion of gold atoms to create droplets that have lower energy compared to the film. The detected effect may be related to the fact that there are residual zinc atoms in zinc oxide, which come into contact with gold atoms and interfere with their surface diffusion. This hypothesis is consistent with the following facts: gold forms alloys with zinc, but these alloys are brittle. That is, zinc atoms in gold alloys prevent the movement of dislocations in the gold lattice.
It is shown that the application of an additional sol-gel nanolayer of zinc oxide on the surface of the sensitive element of the SPR sensor creates a complex of positive properties, namely: it improves its sensitivity due to a significant reduction of stresses in the gold nanolayer during annealing using sol-gel technology and, in addition, increases the life of the sensitive element because this additional layer prevents the gold layer from wearing away. Therefore, an additional nanolayer of zinc oxide made it possible to create an improved PPR-sensitive element.
Prospective areas of use of the improved sensitive element in the future are proposed for the control and research of substances in veterinary medicine, microbiology, food and ceramic and abrasive industries
Keywords: zinc oxide, sol-gel technology, sensitive element, surface plasmon resonance.
References
[1]. Karki B., Trabelsi Y., Pal A., Taya S.A., Yadav R.B. Direct detection of dopamine using zinc oxide nanowire-based surface plasmon resonance sensor. Opt. Mater. (Amst). 2024.147. Р.114555. doi:10.1016/j.optmat.2023.114555.
[2]. Giarola J.F., Soler M., Estevez M.-C., Tarasova A., Le Poder S., Wasniewski M., Decaro N., Lechuga L.M. Validation of a plasmonic-based serology biosensor for veterinary diagnosis of COVID-19 in domestic animals. Talanta. 2024. 271. Р.125685. doi:10.1016/j.talanta.2024.125685.
[3]. Klestova Z.S., Voronina A.K., Yushchenko A.Y., Vatlitsova O.S., Dorozinsky G.V., Ushenin Y.V., Maslov V.P., Doroshenko T.P., Kravchenko S.A. Aspects of “antigen–antibody” interaction of chicken infectious bronchitis virus determined by surface plasmon resonance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022.264. Р.120236. doi:10.1016/j.saa.2021.120236.
[4]. Venger E., Maslov V., Ushenin I., Samoilov A., Gromovoi I., Dorozinsky G., Klestova Z., Babkin M., Godovskii O. Method of diagnosis of leukemia of cattle. 2016. Р.111270. http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=221845.
[5]. Agarwal S., Raparia R., Prajapati Y.K. Graphene-Based Surface Plasmon Resonance Sensor for Milk Adulteration Sensing, in: 2024 IEEE Appl. Sens. Conf., IEEE. 2024. Р. 1–4. doi:10.1109/APSCON60364.2024.10466161.
[6]. Muheki J., Wekalao J., Albargi H.B., Jalalah M., Almawgani A.H.M., Patel S.K. A Graphene Gold Metasurface Inspired Surface Plasmon Resonance Sensor Designed for Terahertz Applications in Sensing and Detection of Heavy Metals in Water. Plasmonics. 2024. doi:10.1007/s11468-024-02273-w.
[7]. Xu Y., Feng W. MUA/NPAM/ZnO-coated Fiber-Optic surface plasmon resonance sensor for trace Chromium-Ion detection. Opt. Laser Technol. 2024. 169. Р.110184. doi:10.1016/j.optlastec.2023.110184.
[8]. Alaaudeen K.M., Manoharadas S., Dhasarathan V., Rajeshkannan S. Design and Modelling of Surface Plasmon Resonance Biosensor Employing BaTiO3 and Graphene Nanostructure for Detection of SARS-CoV-2 Virus. Plasmonics. 2024. doi:10.1007/s11468-024-02322-4.
[9]. Huang Y.-C., Wang S.-F., Chen B.-C., Yang Z.-S., Li M.-C., Wu, X.-Y., Youh M.-J., Chou H.- Y., Lin Y.-X., Assavalapsaku W., Thitithanyanont L. A., Su L.-C. Towards cost-effective and lightweight surface plasmon resonance biosensing for H5N1 avian influenza virus detection: Integration of novel near-infrared organic photodetectors. Sensors Actuators B Chem. 2024. 400.Р.134898. doi:10.1016/j.snb.2023.134898.
[10]. Kumar V., Raghuwanshi S.K., Kumar S. Nanomaterial-Based Surface Plasmon Resonance Sensing Chip for Detection of Skin and Breast Cancer. Plasmonics. 2024. 19. Р. 643–654. doi:10.1007/s11468-023-02022-5.
[11]. Ibrahimi K.M., Kumar R., Pakhira W. Early detection of cancer cells using high-sensitivity dual-side polished photonic crystal fiber biosensors based on surface plasmon resonance. Opt. Quantum Electron. 2024. 56. Р.888. doi:10.1007/s11082-024-06782-0.
[12]. Ouardi M.E., Meradi K.A., Tayeboun F., Aly A.H. Detection of Water-alcohol Content Using Surface Plasmon Resonance. Plasmonics.2024. doi:10.1007/s11468-024-02285-6.
[13]. Hiep L.T.T., Teerasitwaratorn K. T. Bora Surface Plasmon Resonance (SPR) Biosensors for Antibiotic Residue Detection.2024. Р. 447–467. doi:10.1007/978-981-99-7848-9_22.
[14]. Fatolahi L., Addulrahman T. Shamil., Alemi S., Al-Delfi M.N., Athab A.H., Janani B.J. Optical detection of fat and adulterants concentration milk using TMDC (WS2 and MoS2)-surface plasmon resonance sensor via high sensitivity and detection accuracy. Opt. Mater. (Amst). 2024.147. Р.114723. doi:10.1016/j.optmat.2023.114723.
[15]. Kumar M. Metal oxide nanocomposites for surface plasmon resonance based gas sensing, in: Complex Compos. Met. Oxides Gas VOC Humidity Sensors. Elsevier. 2024. 1. Р. 255–271. doi:10.1016/B978-0-323-95385-6.00003-9.
[16]. Chylek J., Ciprian D., Hlubina P. Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor. Eur. Phys. J. Plus. 2024. 139. Р.11. doi:10.1140/epjp/s13360-023-04798-1.
[17]. Homola Y. Surface Plasmon Resonance Based Sensors. Springer Berlin Heidelber. 2006. doi:10.1007/b100321.
[18]. Liedberg B., Nylander C., Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators. 1983. 4. Р.299–304. doi:10.1016/0250-6874(83)85036-7.
[19]. Liu H., Wang B., Leong E.S.P., Yang P., Zong Y., Si G., Teng J., Maier S.A. Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer. ACS Nano. 2010.4. Р.3139–3146. doi:10.1021/nn100466p.
[20]. Szunerits S., Castel X., Boukherroub R. Preparation of Electrochemical and Surface Plasmon Resonance Active Interfaces: Deposition of Indium Tin Oxide on Silver Thin Films. J. Phys. Chem. 2008. 112. Р.10883–10888. doi:10.1021/jp8025682.
[21]. Manesse M., Sanjines R., Stambouli V., Jorel C., Pelissier B., Pisarek M., Boukherroub R., Szunerits S. Preparation and Characterization of Silver Substrates Coated with Antimony-Doped SnO 2 Thin Films for Surface Plasmon Resonance Studies. Langmuir. 2009.25. Р.8036–8041. doi:10.1021/la900502y.
[22]. Hinman S.S., McKeating K.S., Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal. Chem. 2018.90. Р.19–39. doi:10.1021/acs.analchem.7b04251.
[23]. Lu M., Liang Y., Qian S., Li L., Jing Z., Masson J.-F., W. Peng W. Optimization of Surface Plasmon Resonance Biosensor with Ag/Au Multilayer Structure and Fiber-Optic Miniaturization. Plasmonics. 2017.12. Р.663–673. doi:10.1007/s11468-016-0312-4.
[24]. Tanabe I., Tanaka Y.Y., Watari K., Hanulia T., Goto T., Inami W., Kawata Y., Ozaki Y. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Sci. Rep. 2017. 7. Р.5934. doi:10.1038/s41598-017-06403-9.
[25]. Patil P.O., Pandey G.R., Patil A.G., Borse V.B., Deshmukh P.K., Patil D.R., Tade R.S., Nangare S.N., Khan Z.G., Patil A.M., More M.P., Veerapandian M., Bari S.B. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019. 139. Р.111324. doi:10.1016/j.bios.2019.111324.
[26]. Xu Y., Chang J., Ni H., Dai T., Krasavin A. V., Chen M. High linearity temperature-compensated SPR fiber sensor for the detection of glucose solution concentrations. Opt. Laser Technol. 2024. 169.Р.110133. doi:10.1016/j.optlastec.2023.110133.
[27]. Liu Y., Peng W. Fiber-Optic Surface Plasmon Resonance Sensors and Biochemical Applications: A Review. J. Light. Technol. 2021. 39. Р.3781–3791. doi:10.1109/JLT.2020.3045068.
[28]. Prabowo B., Purwidyantri A., Liu K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors. 8. 2018. Р.80. doi:10.3390/bios8030080.
[29]. Karki B., Sarkar P., Dhiman G., Srivastava G., Kumar M. Platinum Diselenide and Graphene-Based Refractive Index Sensor for Cancer Detection. Plasmonics. 2024.19. Р.953–962. doi:10.1007/s11468-023-02051-0.
[30]. Karki B., Uniyal A., Sarkar P., Pal A., Yadav R.B. Sensitivity Improvement of Surface Plasmon Resonance Sensor for Glucose Detection in Urine Samples Using Heterogeneous Layers: An Analytical Perspective. J. Opt. 2023. doi:10.1007/s12596-023-01418-0.
[31]. Zhang P., Wang J., Chen G., Shen J., Li C., Tang T. A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics. 2021. 8. Р. 270. doi:10.3390/photonics8070270.
[32]. Moznuzzaman M., Islam M.R., Khan I. Effect of layer thickness variation on sensitivity: An SPR based sensor for formalin detection, Sens. Bio-Sensing Res. 2021.32. Р.100419. doi:10.1016/j.sbsr.2021.100419.
[33]. Abdallah B., Zetoun W., Tello A. Deposition of ZnO thin films with different powers using RF magnetron sputtering method: Structural, electrical and optical study. Heliyon. 2024. 10. e27606. doi:10.1016/j.heliyon.2024.e27606.
[34]. Mei G.S., Susthitha Menon P., Hegde G. ZnO for performance enhancement of surface plasmon resonance biosensor: а review. Mater. Res. Express. 2020. 7. doi:10.1088/2053-1591/ab66a7.
[35]. Otalora C., Botero M.A., Ordoñez G. ZnO compact layers used in third-generation photovoltaic devices: a review. J. Mater. Sci. 2021. 56. Р.15538–15571. doi:10.1007/s10853-021-06275-5.
[36]. Singh S., Thiyagarajan P., Mohan Kant K., Anita D., Thirupathiah S., Rama N., Tiwari B., Kottaisamy M., Ramachandra Rao M.S. Structure, microstructure and physical properties of ZnO based materials in various forms: Bulk, thin film and nano. J. Phys. D. Appl. Phys. 2007.40. Р.6312–6327. doi:10.1088/0022-3727/40/20/S15.
[37]. Sanpradit P., Byeon E., Lee J.-S., Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023. 273. Р.109720. doi:10.1016/j.cbpc.2023.109720.
[38]. Chiu N.-F., Tu Y.-C., Huang T.-Y. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers. Sensors. 2013. 14. Р.170–187. doi:10.3390/s140100170.
[39]. Wang J.X., Sun X.W., Wei A., Lei Y., Cai X.P., Li C.M., Dong Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 2006.88. doi:10.1063/1.2210078.
[40]. Tomaev V. V., Polischuk V.A., Vartanyan T.A., Mjakin S. V., Leonov N.B., Semenova A.A. Studies of Zinc and Zinc Oxide Nanofilms of Different Thickness Prepared by Magnetron Sputtering and Thermal Oxidation. Opt. Spectrosc. 2021. 129. Р.1033–1037. doi:10.1134/S0030400X21070201.
[41]. AL-Arique H.Q.N.M., AL-Qadasy S.S.S., Kaawash N.M.S., Chishty S.Q., Bogle K.A. Study the characterization of ZnO and AZO films prepared by spray pyrolysis and the effect of annealing temperature. Opt. Mater. (Amst). 2024.150. Р.115261. doi:10.1016/j.optmat.2024.115261.
[42]. Khorsand Zak A., Esmaeilzadeh J., Hashim A.M. Exploring the gelatin-based sol-gel approach: A convenient route for fabricating high-quality pure and doped ZnO nanostructures. Ceram. Int. 2024. 50. Р.12649–12663. doi:10.1016/j.ceramint.2024.01.254.
[43]. Brinker C.J., Scherer G.W. Sol-Gel Science. Elsevier. 1990. doi:10.1016/C2009-0-22386-5.
[44]. Saleem M. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 2012.7. doi:10.5897/IJPS12.219.
[45]. Emami M., Goodarzi R. Optoelectronic correlations for gold thin films in different annealing temperature. Optik (Stuttg). 2018. 171. Р.397–403. doi:10.1016/j.ijleo.2018.06.075.
[46]. Moniruzzaman Syed, Caleb Glaser, Cameron Hynes, Muhtadyuzzaman Syed. Thermal Annealing of Gold Thin Films on the Structure and Surface Morphology Using RF Magnetron Sputtering. J. Mater. Sci. Eng. 2018. B. 8. doi:10.17265/2161-6221/2018.3-4.004.
[47]. Look D.C., Reynolds D.C., Hemsky J.W., Jones R.L., Sizelove J. R. Production and annealing of electron irradiation damage in ZnO. Appl. Phys. Lett. 1999.75. Р.811–813. doi:10.1063/1.124521.
[48]. Mustaffa S.N., Md Yatim N., Abdul Rashid A.R., Md Yatim N., Pithaih V., Sha’ari N.S., Muhammad A.R., Abdul Rahman A., Jamil N.A., Menon P.S. Visible and angular interrogation of Kretschmann-based SPR using hybrid Au–ZnO optical sensor for hyperuricemia detection. Heliyon. 2023.9. e22926. doi:10.1016/j.heliyon.2023.e22926.
[49]. Fedorenko A.V.,Kachur N.V., Dorozinska H.V., Dorozinsky G.V., Maslov V.P., Sulima O.V., Rudyk T.O. Application of the surface plasmon resonance phenomenon to controlling suspensions. Semicond. Physics, Quantum Electron. Optoelectron. 2023. 26. Р.084–088. doi:10.15407/spqeo26.01.084.
[50]. Fedorenko A.V., Kachur N.V., Maslov V.P. Wear resistance of sensors based on surface plasmon resonance phenomenon. Semicond. Physics, Quantum Electron. Optoelectron. 2023. 26. Р.242–246. doi:10.15407/spqeo26.02.242.
[51]. Bhushan B. Self-Assembled Monolayers for Nanotribology and Surface Protection, in: B. Bhushan (Ed.), Springer Handb. Nanotechnol. Springer Berlin Heidelberg, Berlin, Heidelberg. 2010. Р.1309–1346. doi:10.1007/978-3-642-02525-9_39.
[52]. Malav L., Tyagi P.K. Nanotribology and its Need-A Review. Int. J. Trend Sci. Res. Dev. 2019. 3.Р. 587–589. doi:10.31142/ijtsrd22908.
[53]. Fedorenko A., Kachur N., Sulima O.V., Maslov V. Protective properties of ZnO nanofilm against wear and mechanical damage of sensitive SPR sensor element. J. Funct. Mater. 2024.2.
[54]. Золь-гель спосіб формування плівок оксиду цинку: пат.154699 Україна: МПК C01G 9/02(2006.01). № u202301296; заявл.27.03.23; опубл.6.12.23,Бюл.№49.
А.В. Федоренко, В.П. Маслов, Г.В. Дорожинська, Н.В. Качур
ПЕРСПЕКТИВНІ НАПРЯМКИ ВПРОВАДЖЕННЯ ЗОЛЬ-ГЕЛЬ ТЕХНОЛОГІЇ СИНТЕЗУ НАНОРОЗМІРНИХ ПЛІВОК ОКСИДУ ЦИНКУ В ППР-СЕНСОРАХ (ОГЛЯД)
Оксид цинку є перспективним матеріалом оптоелектроніки. Він термостійкий, має антикорозійні та протимікробні властивості, екологічно безпечний та дешевий, також йому притаманна висока біосумісність. Тому цей матеріал є привабливим для використання в якості додаткового наношару ППР-сенсора.
Розглянуто основні технології нанесення оксиду цинку на шар золота. Визначено, що золь-гель технологія має ряд переваг, а саме: не потребує коштовного обладнання і спеціальних приміщень, дозволяє одночасно наносити плівку на велику партію зразків.
Показано, що нанесення додаткового золь-гель наношару оксиду цинку на поверхню чутливого елемента ППР-сенсора створює комплекс позитивних властивостей, а саме: покращує його чутливість за рахунок суттєвого зменшення напружень в наношарі золота при відпалі за золь-гель технологією і, крім того, збільшує термін експлуатації чутливого елемента, тому що цей додатковий шар запобігає зношуванню шару золота. Тому додатковий наношар оксиду цинку дозволив створити удосконалений ППР-чутливий елемент.
Перспективними напрямками використання вдосконаленого чутливого елементу в подальшому запропоновано для контролю та досліджень речовин у ветеринарії, мікробіології, харчовій, керамічній і абразивній промисловостях.
Ключові слова: оксид цинку, золь-гель технологія, чутливий елемент, поверхневий плазмонний резонанс.