[1]. Karki B., Trabelsi Y., Pal A., Taya S.A., Yadav R.B. Direct detection of dopamine using zinc oxide nanowire-based surface plasmon resonance sensor. Opt. Mater. (Amst). 2024.147. Р.114555. doi:10.1016/j.optmat.2023.114555.
[2]. Giarola J.F., Soler M., Estevez M.-C., Tarasova A., Le Poder S., Wasniewski M., Decaro N., Lechuga L.M. Validation of a plasmonic-based serology biosensor for veterinary diagnosis of COVID-19 in domestic animals. Talanta. 2024. 271. Р.125685. doi:10.1016/j.talanta.2024.125685.
[3]. Klestova Z.S., Voronina A.K., Yushchenko A.Y., Vatlitsova O.S., Dorozinsky G.V., Ushenin Y.V., Maslov V.P., Doroshenko T.P., Kravchenko S.A. Aspects of “antigen–antibody” interaction of chicken infectious bronchitis virus determined by surface plasmon resonance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022.264. Р.120236. doi:10.1016/j.saa.2021.120236.
[4]. Venger E., Maslov V., Ushenin I., Samoilov A., Gromovoi I., Dorozinsky G., Klestova Z., Babkin M., Godovskii O. Method of diagnosis of leukemia of cattle. 2016. Р.111270. http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=221845.
[5]. Agarwal S., Raparia R., Prajapati Y.K. Graphene-Based Surface Plasmon Resonance Sensor for Milk Adulteration Sensing, in: 2024 IEEE Appl. Sens. Conf., IEEE. 2024. Р. 1–4. doi:10.1109/APSCON60364.2024.10466161.
[6]. Muheki J., Wekalao J., Albargi H.B., Jalalah M., Almawgani A.H.M., Patel S.K. A Graphene Gold Metasurface Inspired Surface Plasmon Resonance Sensor Designed for Terahertz Applications in Sensing and Detection of Heavy Metals in Water. Plasmonics. 2024. doi:10.1007/s11468-024-02273-w.
[7]. Xu Y., Feng W. MUA/NPAM/ZnO-coated Fiber-Optic surface plasmon resonance sensor for trace Chromium-Ion detection. Opt. Laser Technol. 2024. 169. Р.110184. doi:10.1016/j.optlastec.2023.110184.
[8]. Alaaudeen K.M., Manoharadas S., Dhasarathan V., Rajeshkannan S. Design and Modelling of Surface Plasmon Resonance Biosensor Employing BaTiO3 and Graphene Nanostructure for Detection of SARS-CoV-2 Virus. Plasmonics. 2024. doi:10.1007/s11468-024-02322-4.
[9]. Huang Y.-C., Wang S.-F., Chen B.-C., Yang Z.-S., Li M.-C., Wu, X.-Y., Youh M.-J., Chou H.- Y., Lin Y.-X., Assavalapsaku W., Thitithanyanont L. A., Su L.-C. Towards cost-effective and lightweight surface plasmon resonance biosensing for H5N1 avian influenza virus detection: Integration of novel near-infrared organic photodetectors. Sensors Actuators B Chem. 2024. 400.Р.134898. doi:10.1016/j.snb.2023.134898.
[10]. Kumar V., Raghuwanshi S.K., Kumar S. Nanomaterial-Based Surface Plasmon Resonance Sensing Chip for Detection of Skin and Breast Cancer. Plasmonics. 2024. 19. Р. 643–654. doi:10.1007/s11468-023-02022-5.
[11]. Ibrahimi K.M., Kumar R., Pakhira W. Early detection of cancer cells using high-sensitivity dual-side polished photonic crystal fiber biosensors based on surface plasmon resonance. Opt. Quantum Electron. 2024. 56. Р.888. doi:10.1007/s11082-024-06782-0.
[12]. Ouardi M.E., Meradi K.A., Tayeboun F., Aly A.H. Detection of Water-alcohol Content Using Surface Plasmon Resonance. Plasmonics.2024. doi:10.1007/s11468-024-02285-6.
[13]. Hiep L.T.T., Teerasitwaratorn K. T. Bora Surface Plasmon Resonance (SPR) Biosensors for Antibiotic Residue Detection.2024. Р. 447–467. doi:10.1007/978-981-99-7848-9_22.
[14]. Fatolahi L., Addulrahman T. Shamil., Alemi S., Al-Delfi M.N., Athab A.H., Janani B.J. Optical detection of fat and adulterants concentration milk using TMDC (WS2 and MoS2)-surface plasmon resonance sensor via high sensitivity and detection accuracy. Opt. Mater. (Amst). 2024.147. Р.114723. doi:10.1016/j.optmat.2023.114723.
[15]. Kumar M. Metal oxide nanocomposites for surface plasmon resonance based gas sensing, in: Complex Compos. Met. Oxides Gas VOC Humidity Sensors. Elsevier. 2024. 1. Р. 255–271. doi:10.1016/B978-0-323-95385-6.00003-9.
[16]. Chylek J., Ciprian D., Hlubina P. Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor. Eur. Phys. J. Plus. 2024. 139. Р.11. doi:10.1140/epjp/s13360-023-04798-1.
[17]. Homola Y. Surface Plasmon Resonance Based Sensors. Springer Berlin Heidelber. 2006. doi:10.1007/b100321.
[18]. Liedberg B., Nylander C., Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators. 1983. 4. Р.299–304. doi:10.1016/0250-6874(83)85036-7.
[19]. Liu H., Wang B., Leong E.S.P., Yang P., Zong Y., Si G., Teng J., Maier S.A. Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer. ACS Nano. 2010.4. Р.3139–3146. doi:10.1021/nn100466p.
[20]. Szunerits S., Castel X., Boukherroub R. Preparation of Electrochemical and Surface Plasmon Resonance Active Interfaces: Deposition of Indium Tin Oxide on Silver Thin Films. J. Phys. Chem. 2008. 112. Р.10883–10888. doi:10.1021/jp8025682.
[21]. Manesse M., Sanjines R., Stambouli V., Jorel C., Pelissier B., Pisarek M., Boukherroub R., Szunerits S. Preparation and Characterization of Silver Substrates Coated with Antimony-Doped SnO 2 Thin Films for Surface Plasmon Resonance Studies. Langmuir. 2009.25. Р.8036–8041. doi:10.1021/la900502y.
[22]. Hinman S.S., McKeating K.S., Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal. Chem. 2018.90. Р.19–39. doi:10.1021/acs.analchem.7b04251.
[23]. Lu M., Liang Y., Qian S., Li L., Jing Z., Masson J.-F., W. Peng W. Optimization of Surface Plasmon Resonance Biosensor with Ag/Au Multilayer Structure and Fiber-Optic Miniaturization. Plasmonics. 2017.12. Р.663–673. doi:10.1007/s11468-016-0312-4.
[24]. Tanabe I., Tanaka Y.Y., Watari K., Hanulia T., Goto T., Inami W., Kawata Y., Ozaki Y. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Sci. Rep. 2017. 7. Р.5934. doi:10.1038/s41598-017-06403-9.
[25]. Patil P.O., Pandey G.R., Patil A.G., Borse V.B., Deshmukh P.K., Patil D.R., Tade R.S., Nangare S.N., Khan Z.G., Patil A.M., More M.P., Veerapandian M., Bari S.B. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019. 139. Р.111324. doi:10.1016/j.bios.2019.111324.
[26]. Xu Y., Chang J., Ni H., Dai T., Krasavin A. V., Chen M. High linearity temperature-compensated SPR fiber sensor for the detection of glucose solution concentrations. Opt. Laser Technol. 2024. 169.Р.110133. doi:10.1016/j.optlastec.2023.110133.
[27]. Liu Y., Peng W. Fiber-Optic Surface Plasmon Resonance Sensors and Biochemical Applications: A Review. J. Light. Technol. 2021. 39. Р.3781–3791. doi:10.1109/JLT.2020.3045068.
[28]. Prabowo B., Purwidyantri A., Liu K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors. 8. 2018. Р.80. doi:10.3390/bios8030080.
[29]. Karki B., Sarkar P., Dhiman G., Srivastava G., Kumar M. Platinum Diselenide and Graphene-Based Refractive Index Sensor for Cancer Detection. Plasmonics. 2024.19. Р.953–962. doi:10.1007/s11468-023-02051-0.
[30]. Karki B., Uniyal A., Sarkar P., Pal A., Yadav R.B. Sensitivity Improvement of Surface Plasmon Resonance Sensor for Glucose Detection in Urine Samples Using Heterogeneous Layers: An Analytical Perspective. J. Opt. 2023. doi:10.1007/s12596-023-01418-0.
[31]. Zhang P., Wang J., Chen G., Shen J., Li C., Tang T. A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics. 2021. 8. Р. 270. doi:10.3390/photonics8070270.
[32]. Moznuzzaman M., Islam M.R., Khan I. Effect of layer thickness variation on sensitivity: An SPR based sensor for formalin detection, Sens. Bio-Sensing Res. 2021.32. Р.100419. doi:10.1016/j.sbsr.2021.100419.
[33]. Abdallah B., Zetoun W., Tello A. Deposition of ZnO thin films with different powers using RF magnetron sputtering method: Structural, electrical and optical study. Heliyon. 2024. 10. e27606. doi:10.1016/j.heliyon.2024.e27606.
[34]. Mei G.S., Susthitha Menon P., Hegde G. ZnO for performance enhancement of surface plasmon resonance biosensor: а review. Mater. Res. Express. 2020. 7. doi:10.1088/2053-1591/ab66a7.
[35]. Otalora C., Botero M.A., Ordoñez G. ZnO compact layers used in third-generation photovoltaic devices: a review. J. Mater. Sci. 2021. 56. Р.15538–15571. doi:10.1007/s10853-021-06275-5.
[36]. Singh S., Thiyagarajan P., Mohan Kant K., Anita D., Thirupathiah S., Rama N., Tiwari B., Kottaisamy M., Ramachandra Rao M.S. Structure, microstructure and physical properties of ZnO based materials in various forms: Bulk, thin film and nano. J. Phys. D. Appl. Phys. 2007.40. Р.6312–6327. doi:10.1088/0022-3727/40/20/S15.
[37]. Sanpradit P., Byeon E., Lee J.-S., Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023. 273. Р.109720. doi:10.1016/j.cbpc.2023.109720.
[38]. Chiu N.-F., Tu Y.-C., Huang T.-Y. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers. Sensors. 2013. 14. Р.170–187. doi:10.3390/s140100170.
[39]. Wang J.X., Sun X.W., Wei A., Lei Y., Cai X.P., Li C.M., Dong Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 2006.88. doi:10.1063/1.2210078.
[40]. Tomaev V. V., Polischuk V.A., Vartanyan T.A., Mjakin S. V., Leonov N.B., Semenova A.A. Studies of Zinc and Zinc Oxide Nanofilms of Different Thickness Prepared by Magnetron Sputtering and Thermal Oxidation. Opt. Spectrosc. 2021. 129. Р.1033–1037. doi:10.1134/S0030400X21070201.
[41]. AL-Arique H.Q.N.M., AL-Qadasy S.S.S., Kaawash N.M.S., Chishty S.Q., Bogle K.A. Study the characterization of ZnO and AZO films prepared by spray pyrolysis and the effect of annealing temperature. Opt. Mater. (Amst). 2024.150. Р.115261. doi:10.1016/j.optmat.2024.115261.
[42]. Khorsand Zak A., Esmaeilzadeh J., Hashim A.M. Exploring the gelatin-based sol-gel approach: A convenient route for fabricating high-quality pure and doped ZnO nanostructures. Ceram. Int. 2024. 50. Р.12649–12663. doi:10.1016/j.ceramint.2024.01.254.
[43]. Brinker C.J., Scherer G.W. Sol-Gel Science. Elsevier. 1990. doi:10.1016/C2009-0-22386-5.
[44]. Saleem M. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 2012.7. doi:10.5897/IJPS12.219.
[45]. Emami M., Goodarzi R. Optoelectronic correlations for gold thin films in different annealing temperature. Optik (Stuttg). 2018. 171. Р.397–403. doi:10.1016/j.ijleo.2018.06.075.
[46]. Moniruzzaman Syed, Caleb Glaser, Cameron Hynes, Muhtadyuzzaman Syed. Thermal Annealing of Gold Thin Films on the Structure and Surface Morphology Using RF Magnetron Sputtering. J. Mater. Sci. Eng. 2018. B. 8. doi:10.17265/2161-6221/2018.3-4.004.
[47]. Look D.C., Reynolds D.C., Hemsky J.W., Jones R.L., Sizelove J. R. Production and annealing of electron irradiation damage in ZnO. Appl. Phys. Lett. 1999.75. Р.811–813. doi:10.1063/1.124521.
[48]. Mustaffa S.N., Md Yatim N., Abdul Rashid A.R., Md Yatim N., Pithaih V., Sha’ari N.S., Muhammad A.R., Abdul Rahman A., Jamil N.A., Menon P.S. Visible and angular interrogation of Kretschmann-based SPR using hybrid Au–ZnO optical sensor for hyperuricemia detection. Heliyon. 2023.9. e22926. doi:10.1016/j.heliyon.2023.e22926.
[49]. Fedorenko A.V.,Kachur N.V., Dorozinska H.V., Dorozinsky G.V., Maslov V.P., Sulima O.V., Rudyk T.O. Application of the surface plasmon resonance phenomenon to controlling suspensions. Semicond. Physics, Quantum Electron. Optoelectron. 2023. 26. Р.084–088. doi:10.15407/spqeo26.01.084.
[50]. Fedorenko A.V., Kachur N.V., Maslov V.P. Wear resistance of sensors based on surface plasmon resonance phenomenon. Semicond. Physics, Quantum Electron. Optoelectron. 2023. 26. Р.242–246. doi:10.15407/spqeo26.02.242.
[51]. Bhushan B. Self-Assembled Monolayers for Nanotribology and Surface Protection, in: B. Bhushan (Ed.), Springer Handb. Nanotechnol. Springer Berlin Heidelberg, Berlin, Heidelberg. 2010. Р.1309–1346. doi:10.1007/978-3-642-02525-9_39.
[52]. Malav L., Tyagi P.K. Nanotribology and its Need-A Review. Int. J. Trend Sci. Res. Dev. 2019. 3.Р. 587–589. doi:10.31142/ijtsrd22908.
[53]. Fedorenko A., Kachur N., Sulima O.V., Maslov V. Protective properties of ZnO nanofilm against wear and mechanical damage of sensitive SPR sensor element. J. Funct. Mater. 2024.2.
[54]. Золь-гель спосіб формування плівок оксиду цинку: пат.154699 Україна: МПК C01G 9/02(2006.01). № u202301296; заявл.27.03.23; опубл.6.12.23,Бюл.№49.