https://doi.org/10.15407/jopt.2017.52.005

Optoelectron. Semicond. Tech. 52, 5-36 (2017)

A.V. Sukach, V.V. Tetyorkin, A.I. Tkachuk1, S.P. Trotsenko

InSb PHOTODIODES (REVIEW. PART III)

Summarized have been literature data on the main parameters of defects in InSb, namely: ionization energy, concentration and capture cross section. The main recombination mechanisms of non-equilibrium charge carriers in monocrystalline InSb have been considered. The role of antistructural defects in the mechanism of Schockley–Read–Hall recombination has been analyzed. The mechanisms of charge carrier transfer and threshold parameters of InSb infrared photodiodes have been analyzed. The mechanisms of conductivity of InSb MOS structures have been described. The energy of the traps in the anodic oxide, which can define the mechanism of Poole–Frenkel emission, has been determined. The results of thermal cycling of MOS structures based on InSb have been presented.

Keywords: InSb photodiode, MOS structures, defects, recombination mechanisms, inhomogeneous p-n junction.

References

1. Madelung O. Fizika poluprovodnikovyh soedinenij elementov III i V grupp. M.: Mir, 1967. (in Russian)

2. Semiconductor and Semimetals. Ed. by R.K. Willardson and A.C. Beer. Vol. 4. Physics of III-V Compounds. Academic Press, N.Y. and London, 1968.

3. Rogalskij A. Infrakrasnye detektory. Novosibirsk: Nauka, 2003. (in Russian)

4. Hulme K.F. and Mullin J.B. Indium antimonide - a review of its preparation, properties and device solid-state electronics applications. Solid-State Electron. 1962. 5, No. 2. P. 211-247.

https://doi.org/10.1016/0038-1101(62)90104-1

5. www.wafertech.co.uk 6. www.galaxywafer.com

7. Wimmers J.T., Davis R.M., Niblack C.A. and Smith D.S. Indium antimonide detector technology of Cincinati Electronics Corporation Proc. SPIE. 1988. 930. P. 125-138.

https://doi.org/10.1117/12.946633

8. Nishitani K., Nagahama K. and Mutorani T. Extremally reproducible zinc diffusion into InSb and its applications to infrared array. J. Electron. Mater. 1983. 12, No. 1.P. 125-141.

https://doi.org/10.1007/BF02651639

9. Hurwitz C.E. and Donnelly I.P. Planar InSb photodiodes fabricated by Be and Mg ion implantation. Solid-State Electron. 1975. 18, No. 9. P. 753-756.

https://doi.org/10.1016/0038-1101(75)90152-5

10. Hall D.N., Aikens R.S., Jouse R. et al. Johnson noise limited operation of photovoltaic InSb detectors. Appl. Opt. 1975. 14, No. 2. P. 450-453.

https://doi.org/10.1364/AO.14.000450

11. Astahov V.P., Gindin P.D., Karpov V.V. i dr. Rezultaty razrabotki fotodiodov na InSb s ultra-nizkimi temnovymi tokami dlya vysokochuvstvitelnyh PZS. Prikladnaya fizika. 1999. №2. S. 73-79. (in Russian)

12. Gerasimenko N.N., Guzev A.A., Kuryshev G.L. i dr. Primenenie metodov ionnogo legirovaniya dlya sozdaniya p-n-perehodov na InSb i InAs. Preprint 2. Institut fiziki poluprovodnikov SO AN SSSR. Novosibirsk: Institut fiziki poluprovodnikov SO AN SSSR, 1991. (in Russian)

13. Bloom I. and Nemirovsky Y. Surface passivation of backside-illuminated indium antimonide focal plane array. IEEE Trans. Electron. Devices. 1993. 40, No. 2. P. 303-313.

https://doi.org/10.1109/16.182506

14. Miroshnikova I.N., Gulyaev A.M., Nedoruba D.A. Primenenie shumovoj spektroskopii dlya prognozirovaniya nadezhnosti priemnikov IK-izlucheniya na osnove antimonida indiya. Prikladnaya fizika. 2003. №6. S. 92-97. (in Russian)

15. Sun Tai-Ping, Lee Si-Chen, Yang Cheng-Jeen. The current leakage mechanism in InSb p+-n-diodes. J. Apll. Phys. 1990. 67, No. 11. P. 7092-7097.

https://doi.org/10.1063/1.345059

16. Trohin A.S., Skakun N.A., Stoyanova I.G. i dr. Lokalizaciya atomov berilliya v kristallicheskoj reshetke antimonida indiya pri ionnoj implantacii. Poverhnost. Fizika, himiya, mehanika. 1988. №8. S. 144-146. (in Russian)

17. Kuryshev G.L., Myasnikov A.M., Obodnikov V.I. i dr. Pereraspredelenie berilliya v InSb i InAs pri vnedrenii ionov i posleduyushem otzhige. FTP. 1994. 28, №3. S. 439-442. (in Russian)

18. Jialu Liu, Tinging Zhang. Rapid thermal annealing characteristics of Be implanted into InSb. Appl. Surf. Sci. 1998. 126, No. 2. P. 231-234.

https://doi.org/10.1016/S0169-4332(97)00695-8

19. Madelung O. (Ed.) Semiconductors - Basic Data. Springer-Verlag, Berlin-Heidelberg-New York, 1996.

https://doi.org/10.1007/978-3-642-97675-9

20. Milnes A.G. Deep Impurities in Semiconductors. Wiley, 1973.

21. Madelung O., Rössler U., Schulz M. (Eds.) Landolt-Börnstein - Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology, Vol. 41A2b: Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds. Part b: Group IV-IV and III-V Compounds. Springer, 2003.

https://doi.org/10.1007/b83098

22. Smith R.A. Semiconductors. Second edition. Cambridge University Press, 1978.

23. Kasap M. and Acar S. The temperature dependence of electron and magneto-transport properties in Te-doped InSb. phys. status solidi (a). 2004. 201, No 14. P. 3113-3120.

https://doi.org/10.1002/pssa.200406892

24. Bonch-Bruevich V.L., Kalashnikov S.G. Fizika poluprovodnikov. M.: Nauka, 1977. (in Russian)

25. Chroneos A., Tahini H.A., Schwingenschlögl U., Grime R.W. Antisites in III-V semiconductors: Density functional theory calculations. J. Appl. Phys. 2014. 116. P. 023505.

https://doi.org/10.1063/1.4887135

26. Tahini H.A., Chroneos A., Murphy S.T., Schwingenschlögl U., and Grimes R.W. Vacancies and defect levels in III-V semiconductors. J. Appl. Phys. 2014. 114. P. 063517.

https://doi.org/10.1063/1.4818484

27. Höglund A., Castleton C.W.M., Göthelid M., Johansson B., Mirbt S. Point defects on the (110) surfaces of InP, InAs, and InSb: A comparison with bulk. Phys. Rev. 2006. B74. P. 075332.

https://doi.org/10.1103/PhysRevB.74.075332

28. Littler Ch. Characterization of impurities and defects in InSb and HgCdTe using novel magneto-optical techniques. Proc. SPIE. 1993. 2021. P. 184-201.

https://doi.org/10.1117/12.164943

29. Tetyorkin V.V., Sukach A.V., Tkachuk A.A. Infrared photodiodes on II-VI and III-V narrow gap semiconductors. In: Photodiodes - from Fundamentals to Applications. Ed. Prof. Ilgu Yun. Vienna: InTechopen, 2012. P. 403-426.

https://doi.org/10.5772/52930

30. Ismailov N.M., Nasledov D.N., Smetannikova Yu.S. Primesnaya fotoprovodimost antimonida indiya pri nizkih temperaturah. FTP. 1969. 2, №6. S. 901-903. (in Russian)

31. Valyashko E.G., Pleskacheva T.B., Tyapkina N.D. Vliyanie termicheskoj obrabotki na elektricheskie parametry i primesnuyu fotoprovodimost p-InSb. Izv. AN SSSR. Neorgan. mater. 1975. 11, №6. S. 1020-1025. (in Russian)

https://doi.org/10.1002/chin.197538013

32. Cicina N.P., Fadeeva A.P., Vdovkina E.E. i dr. Vliyanie nizkotemperaturnogo otzhiga na svojstva InSb. Izv. AN SSSR. Neorgan. mater. 1975. 11, №5. S. 835-838. (in Russian)

33. Trifonov V.I., Yaremenko N.G. Glubokij donornyj uroven v n-InSb. FTP. 1971. 5, №5. S. 953-956. (in Russian)

34. Golovanov V.V., Oding V.G. Vliyanie kompensacii glubokogo urovnya na elektricheskie svojstva p-InSb. FTP. 1969. 3, №2. S. 284-286. (in Russian)

35. Blaut-Blachev A.N., Ivleva V.S., Selyanina V.I. Ftor - bystro diffundiruyushij akceptor v antimonide indiya. FTP. 1979. 13, №11. S. 2288-2290. (in Russian)

36. Kevorkov M.N., Popkov A.N., Uspenskij V.S. i dr. Termoakceptory v antimonide indiya. Izv. AN SSSR. Neorgan. mater. 1980. 16, №12. S. 2114-2118. (in Russian)

37. Nasledov D.N., Smetannikova Yu.S. Temperaturnaya zavisimost vremeni zhizni nositelej toka v surmyanistom indii. FTT. 1962. 4, №1. S. 110-121. (in Russian)

38. Laff R.A. and Fan H.Y. Carrier lifetime in indium antimonide. Phys. Rev. 1961. 121, №1. P. 53-62.

https://doi.org/10.1103/PhysRev.121.53

39. Volkov A.S., Golovanov V.V. Rekombinacionnye processy v p-InSb. FTP. 1967. 1, №2. S. 163-171. (in Russian)

40. Hollis J.E.L., Choo S.C. and Heasell E.L. Recombination center in InSb. J. Appl. Phys. 1967. 38, №4. P. 1626-1636.

https://doi.org/10.1063/1.1709734

41. Egemberdieva S.Sh., Luchinin S.D., Sajsenbaev T. i dr. Glubokie urovni v zapreshennoj zone antimonida indiya. FTP. 1982. 16, №3. S. 540-542. (in Russian)

42. Sipovskaya M.A., Smetannikova Yu.S. Zavisimost vremeni zhizni nositelej toka v n-InSb ot koncentracii elektronov. FTP. 1984. 18, №2. S. 356-358. (in Russian)

43. Zitter R.N., Strauss A.J. and Attard A.E. Recombination processes in p-type indium antimonide. Phys. Rev. 1959. 115, №2. P. 266-273.

https://doi.org/10.1103/PhysRev.115.266

44. Golovanov V.V., Ivchenko E.L., Oding V.G. Generacionno-rekombinacionnyj shum v p-InSb pri 78 K. FTP. 1973. 7, №4. S. 798-801. (in Russian)

45. Pehek J. and Levinstein H. Recombination radiation from InSb. Phys. Rev. A. 1965. 140, No 2. P. 576-586.

https://doi.org/10.1103/PhysRev.140.A576

46. Korotin V.G., Krivonogov S.N., Nasledov D.N., Smetannikova Yu.S. Model rekombinacionnyh processov v n-InSb. FTP. 1976. 10, №1. S. 20-24. (in Russian)

47. Gusejnov E.K., Ibragimov R.I., Korotin V.G., Nasledov D.N., Popov Yu.G. Processy rekombinacii v nInSb v oblasti temperatur 4.2-77 K. FTP. 1971. 5, №9. S. 1776-1780. (in Russian)

48. Shepelina O.S., Novotockij-Vlasov Yu.F. Ravnovesnye parametry glubokih obemnyh urovnej v antimonide indiya. FTP. 1992. 26, №6. S. 1015-1023. (in Russian)

49. Volkov V.V., Padalko A.G., Belotelov S.V. i dr. Glubokie centry v monokristallah i tonkih sloyah antimonida indiya. FTP. 1989. 23, №3. P. 1400-1405. (in Russian)

50. Seiler D.G., Goodwin M.W., and Miller A. Resonant magneto-optical transitions from a mid-gap level in n-InSb. Phys. Rev. Lett. 1980. 44, No 12. P. 807-810.

https://doi.org/10.1103/PhysRevLett.44.807

51. Fomin I.A., Lebedeva L.V., Annenko N.M. Issledovanie urovnej glubokih defektov v InSb izmereniem emkosti MDP struktur. FTP. 1984. 18, №3. S. 734-736. (in Russian)

52. Yozu Tokumaru, Hideyo Okushi and Hiroyuki Fujisada. Deep levels in n-type undoped and Te-doped InSb crystals. Jpn. J. Appl. Phys. 1987. 26, No 3. P. 499-500.

https://doi.org/10.1143/JJAP.26.499

53. Nott G.J., Findlay P.C., Crowder J.G. et al. Direct determination of Shockley-Read-Hall trap density in InSb/InAlSb detectors. J. Phys.: Condens. Matter. 2000. 12. P. L731-L734.

https://doi.org/10.1088/0953-8984/12/50/101

54. Stewart A.G., Cherkaoui K., Hall R.S. and Crowder J.G. Deep level transient spectroscopy measurements on heterostructure InSb/InAlSb diodes. Semicond. Sci. Technol. 2004. 19. P. 468-471.

https://doi.org/10.1088/0268-1242/19/3/031

55. Marrakchi G., Joly J.F., Vincent F. et al. Characteristics of electron traps in rapid thermal annealed GaAs using a capping proximity technique. Appl. Surf. Sci. 1989. 36. P. 564-571.

https://doi.org/10.1016/0169-4332(89)90951-3

56. Jialu Liu, Tingqing Zhang. Rapid thermal annealing characteristics of Be implanted into InSb. Appl. Surf. Sci. 1998. 126. P. 231-234.

https://doi.org/10.1016/S0169-4332(97)00695-8

57. Kreutz E.W., Rickus E. and Sotnik N. The effect of temperature on the stoichiometry of InSb(110) surfaces. Surf. Technol. 1980. 11. P. 171-177.

https://doi.org/10.1016/0376-4583(80)90044-8

58. Stariy S.V., Sukach A.V., Tetyorkin V.V., Yukhymchuk V.O., Stara T.R. Effect of thermal annealing on electrical and photoelectrical properties of n-InSb. SPQEO. 2017. 20, No 1. P. 105-109.

https://doi.org/10.15407/spqeo20.01.105

59. Farrow R.L., Chang R.K., Mroczkowski S., and Pollak F.H. Detection of excess crystalline As and Sb in III-V oxide interfaces by Raman scattering. Appl. Phys. Lett. 1977. 31, No 11. P. 768-770.

https://doi.org/10.1063/1.89542

60. Nguyen Hong Ky, Pavesi L., Araújo D., Ganière J.D., and Reinhart F.K. Thermal conversion of n-type GaAs:Si

to p-type in excess arsenic vapor. J. Appl. Phys. 1991. 70, No 7. P. 3887.

https://doi.org/10.1063/1.349196

61. Ohkubo N., Shishikura M., and Matsumoto S. Thermal conversion of semi-insulating GaAs in high temperature annealing. J. Appl. Phys. 1993. 73, No 2. P. 615-618.

https://doi.org/10.1063/1.353371

62. Weng Yumin, Zheng Qingping, Fan Zhineng, Zong Xiangfu. Thermal conversion of semi-insulating GaAs due to gallium vacancies and anti-structure disorder. Chin. Phys. Lett. 1992. 9, No 7. P. 375-378.

https://doi.org/10.1088/0256-307X/9/7/011

63. Roosbroeck W., Shockley W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 1954. 94. P. 1558-1560.

https://doi.org/10.1103/PhysRev.94.1558

64. Beattie A.R. Quantum efficiency in InSb. J. Phys. Chem. Solids. 1962. 23. P. 1049-1056.

https://doi.org/10.1016/0022-3697(62)90122-1

65. Beattie A. and Landsberg P.T. Auger effect in semiconductors. Proc. Roy. Soc. A. 1959. 249. P. 16-29.

https://doi.org/10.1098/rspa.1959.0003

66. Blakemore J.S. Semiconductor Statistics. Pergamon, Oxford, 1962.

67. Chu J.H., Sher A. Physics and Properties of Narrow Gap Semiconductors. Springer, New York, 2007.

68. Gelmont B.L. Trehzonnaya model Kejna i Ozhe-rekombinaciya. ZhETF. 1978. 75, №2. S. 536-544. (in Russian)

69. Gelmont B.L. Ozhe-rekombinaciya v uzkoshelevyh poluprovodnikah r-tipa. FTP. 1981. 15, №7. S.1316-1319. (in Russian)

70. Gelmont B.L., Sokolova Z.N., Yassievich I.N. Ozhe rekombinaciya v pryamozonnyh poluprovodnikah p-tipa. FTP. 1982. 16. S. 592-600. (in Russian)

71. Gelmont B.L., Sokolova Z.N. Ozhe rekombinaciya v pryamozonnyh poluprovodnikah n-tipa. FTP. 1982. 16, №9. S.1670-1672. (in Russian)

72. Sze S. M. Physics of Semiconductors Devices. Second Edition. Wiley, 1981.

73. Shokli V. Teoriya elektronnyh poluprovodnikov. M.: Inostr. Lit., 1953. (in Russian)

74. Thompson P.R. and Larason Th.C. Method of measuring shunt resistance in photodiodes. Measurement Science Conference 2001, Anaheim, CA, January 2001.

75. www.perkinelmer.com

76. Hamamatsu Photonics K.K., Solid State Division, Hamamatsu City, Japan. Photodiodes: Catalog, 1990.

77. Sah C.T., Nouce R.N. and Shockley W. Carrier generation in p-n junctions and p-n junction characteristics. Proc. IRE. 1957. 45, No 9. P. 1228-1243.

https://doi.org/10.1109/JRPROC.1957.278528

78. Abdullaev G.B., Dzhafarov T.D. Atomnaya diffuziya v poluprovodnikovyh strukturah. M.: Atomizdat, 1980. (in Russian)

79. Chang V.F., Thomson H.W. Резкие и диффузионные p-n-переходы. J. Appl. Phys. 1963. 34. P. 3137-3139.

80. Spiridonov N.S., Vertogradov V.I. Drejfovye tranzistory. M.: Sov. radio, 1964. (in Russian)

81. Konstantinov O.V., Carenkov G.V., Efros A.L. K teorii plavnogo p-n-perehoda s maloj diffuzionnoj dlinoj nositelej. FTP. 1967. 1, № 11. S. 1739-1740. (in Russian)

82. Anderson W.W. Tunnel contribution to Hg1-xCdxTe and Pb1-xSnxTe p-n junction diode characteristics. Infrared Phys. 1980. 20. P. 353-361.

https://doi.org/10.1016/0020-0891(80)90052-4

83. Wong I.Y. Effect of trap tunneling on the performance of long-wavelength Hg1-xCdxTe photodiodes. IEEET rans. Electron. Devices. 1980. ED-27. P. 48-57.

https://doi.org/10.1109/T-ED.1980.19818

84. Rosenfeld D. and Bahir G. A model for the trap-assisted tunneling mechanism in diffused n-p and implanted n+-p HgCdTe photodiodes. IEEE. Trans. Electron. Devices. 1992. 39. P. 1638-1645.

https://doi.org/10.1109/16.141229

85. Wentu He, Zeynep Celik-Batler. 1/f noise and dark current components in HgCdTe MIS infrared detectors. Solid. State Electron. 1966. 39, No 1. P. 127-132.

https://doi.org/10.1016/0038-1101(95)00089-C

86. Tetyorkin V., Sukach A. and Tkachuk A. InAs infrared photodiodes. In: Advances in Photodiodes. Ed. GianFranco Dalla Betta. InTech Open Acess Publisher: Vienna, 2011. P. 427-446.

https://doi.org/10.5772/14084

87. Shokli V. Problemy, svyazannye s p-n-perehodami v kremnii. Uspehi fizicheskih nauk. 1962. 77, № 1. S. 161-196. (in Russian)

https://doi.org/10.3367/UFNr.0077.196205d.0161

88. Rajh M.E., Ruzin I.M. Fluktuacionnyj mehanizm izbytochnyh tunnelnyh tokov v obratno smeshennyh p-n-perehodah. FTP. 1985. 19, № 7. S. 1217-1225. (in Russian)

89. Rajh M.E., Ruzin I.M. Temperaturnaya zavisimost fluktuacionnyh izbytochnyh tokov cherez kontakt metall-poluprovodnik. FTP. 1987. 21, № 3. S. 456-460. (in Russian)

90. Rajh M.E., Ruzin I.M., Shklovskij B.I. Vliyanie lokalizovannyh sostoyanij v barere na fluktuacionnyj tunnelnyj tok cherez kontakt metall-poluprovodnik. FTP. 1988. 22, № 11. S. 1979-1985. (in Russian)

91. Sukach A.V, Tetyorkin V.V., Tkachuk A.I. Carrier transport mechanisms in reverse biased InSb p-n junctions. SPQEO. 2015. 18, No 3. P. 267-271.

https://doi.org/10.15407/spqeo18.03.267

92. Biryulin P.V., Turinov V.I., Yakimov E.B. Issledovanie harakteristik fotodiodnyh lineek na osnove InSb. FTP. 2004. 38, №4. C. 488-503. (in Russian)

https://doi.org/10.1134/1.1734678

93. Dewald J.F. The kinetics and mechanism of formation of anode films on single crystals InSb. J. Electrochem. Soc. 1957. 104, No 4. P. 244-251.

https://doi.org/10.1149/1.2428546

94. Physics and Chemistry of III-V Compound Semiconductor Interfaces, C.W. Wilmsen (Ed.). New-York: Plenum, 1985.

95. Chang L.L. and Howard W.E. Surface inversion and accumulation of anodized InSb. Appl. Phys. Lett. 1965. 7, No 8. P. 210-212.

https://doi.org/10.1063/1.1754382

96. Hung R.Y. and Yon E.T. Surface study of anodized indium antimonide. J. Appl. Phys. 1970. 41, No 5. P. 2185-2189.

https://doi.org/10.1063/1.1659187

97. Langan I.D., Vismanasan C.R. Characterization of improved InSb interface. J. Vac. Sci. Technol. 1979. 16, No 5. P. 1474-1477.

https://doi.org/10.1116/1.570225

98. Kai-Feng Huang, Shie J.S., Luo J.J., and Chen J.S. Electrical properties of InSb metal-insulator-semiconductor diodes prepared by photochemical vapour deposition. Thin Solid Films. 1987. 151. P. 145-152.

https://doi.org/10.1016/0040-6090(87)90228-8

99. Barth W. and Lile D. Role of native oxide on indium antimonide surface properties. Thin Solid Films. 1993. 229. P. 54-57.

https://doi.org/10.1016/0040-6090(93)90409-I

100. Sun Weiguo. Interface of anodic sulfide on n-type InSb. Appl. Phys. A. 1981. 52, No 1. P. 64-67.

101. Beketov G.V., Sukach A.V., Tetyorkin V.V., Trotsenko S.P. Trap-assisted conductivity in anodic oxide on InSb. SPQEO. 2017. 20, No 4. P. 470-474.

https://doi.org/10.15407/spqeo20.04.470

102. Zi S. Fizika poluprovodnikovyh priborov, v 2-h knigah, kn. 1. M.: Mir, 1984. (in Russian)

103. Toshihiko Sakurai, Toshimaza Suzuki and Yoshio Noguchi. Formation and proprties of anodic oxide films on indium antimonide. Jpn. J. Appl. Phys. 1968. 7, No 12. P. 1491-1496.

https://doi.org/10.1143/JJAP.7.1491

104. Wilmsen C.W., Vasbinder G.C. and Chang Y.K. Electrical conduction through thermal and anodic oxides of InSb. J. Vac. Sci. Technol. 1975. 12, No 1. P. 56-59.

https://doi.org/10.1116/1.568612

105. Wilmsen C.W. Correlation between the composition profile and electrical conductivity of the thermal and anodic oxides. J. Vac. Sci. Technol. 1976. 13, No 1. P. 64-67.

https://doi.org/10.1116/1.568958

106. Sazonov S.G., Yuryev Yu. N. Conductivity of nature oxides on the surface of AIIIBV compounds. Optoelectronics, Instrumentations and Data Processing. 1988. №3. C. 40-48.

107. Santinacci L., Sproule G.I., Moisa S. et al. Growth and characterization of thin anodic oxide on n-InSb(100) formed in aqueous solutions. Corrosion Sci. 2004. 46. P. 2067-2079.

https://doi.org/10.1016/j.corsci.2003.11.003

108. Tang X., van Welzenis R.G., van Setten F.M. and Bosch A.J. Oxidation of the InSb surface at room temperature. Semicond. Sci. Technol. 1986. 1, No 6. P. 355-365.

https://doi.org/10.1088/0268-1242/1/6/004

109. Scherg-Kurmes H., Seeger S., K­rner S. et al. Optimization of the post-deposition annealing process of highmobility In2O3:H for photovoltaic applications. Thin Solid Films. 2016. 599. P. 78-83.

https://doi.org/10.1016/j.tsf.2015.12.054

110. de Wit I.H.W., van Unen G. and Lahey M. Electron concentration and mobility in In2O3. J. Phys. Chem. Solids. 1977. 38. P. 819-824.

https://doi.org/10.1016/0022-3697(77)90117-2

111. Preissler N., Bierwagen O., Ramu A.T., Speck J.S. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B. 2013. 88. P. 085305.

https://doi.org/10.1103/PhysRevB.88.085305

112. Zhang K.H.L., Egdell R.G., Offi F. et al. Microscopic origin of electron accumulation in In2O3. Phys. Rev. Lett. 2013. 110. P. 056803.

https://doi.org/10.1103/PhysRevLett.110.056803

113. Schroeder H. Poole-Frenkel-effect as dominating current mechanism in thin oxide films - An illusion? J. Appl. Phys. 2015. 117. P. 215103.

https://doi.org/10.1063/1.4921949

114. Vollmann W. Poole-Frenkel conduction in insulators of large impurity densities. phys. status solidi (a). 1974. 22. P. 195-203.

https://doi.org/10.1002/pssa.2210220122

115. Shapira Y., J. Bregman J., Calahorra Z. Origin and effects of interface traps in anodic native oxides on InSb. Appl. Phys. Lett. 1985. 47, No 5. P. 495-497.

https://doi.org/10.1063/1.96104

116. Adar R., Bloom I., Y. Nemirovsky Y. Slow trapping measurements in InSb-anodic oxide interface. Solid-State Electron. 1989. 32, No 2. P. 111-118.

https://doi.org/10.1016/0038-1101(89)90176-7

117. Walsh A., DaSilva J.L.F., Su-Huai Wei et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys. Rev. Lett. 2008. 100. P. 167402.

https://doi.org/10.1103/PhysRevLett.100.167402

118 Tigau N., Ciupina V., Prodan G., Rusu G.I., Gheorghies C., Vasile E. The influence of heat treatment on the electrical conductivity of antimony trioxide thin films. J. Optoelectron. Adv. Mater. 2003. 5. P. 907-912.

119. Tigau N., Ciupina V., Prodan G. Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J. Optoelectron. Adv. Mater. 2006. 8, No 1. P. 37-42.


А.В. Сукач, В.В. Тетьоркін, А.І. Ткачук1, С.П. Троценко

InSb ФОТОДІОДИ (ОГЛЯД. ЧАСТИНА III)

Систематизованo літературні дані щодо основних параметрів дефектів в InSb – енергії іонізації, концентрації та перерізу захоплення. Розглянуто основні механізми рекомбінації нерівноважних носіїв заряду в монокристалічному InSb. Проаналізовано роль антиструктурних дефектів у механізмі рекомбінації Шоклі– Ріда–Холла. Виконано аналіз механізмів перенесення носіїв заряду та гранично можливих параметрів інфрачервоних фотодіодів на основі InSb. Описано механізми електропровідності МДН структур на основі InSb. Визначено енергії пасток в анодному оксиді, які можуть зумовлювати механізм емісії Пула–Френкеля. Наведено результати термічного циклювання МДН структур на основі InSb.

Ключові слова: InSb фотодіоди, МДН структури, дефекти, механізми рекомбінації, неоднорідний p-n перехід.