https://doi.org/10.15407/iopt.2021.56.061

Optoelectron. Semicond. Tech. 56, 61-70 (2021)

Olikh Ya. M., Tymochko M. D., Kladko V. P., Liubchenko O. I., Belyaev A. E., Kaliuzhnyi V. V.


SIGNIFICANCE OF DX-CENTERS FOR ACOUSTIC INDUCED RECONSTRUCTION PROCESSES OF DEFECTS IN GaN/AlGaN

The experimental results of amplitude effects are compared (from an ultrasonic wave deformation amplitude – a tension τUS) for electron concentration and changes of the lattice parameter on the same sample GaN/Al0.2Ga0.8N/GaN/AlN. It has been experimentally established that at ultrasonic loading (frequency 5–10 MHz, amplitude – towards 2·104 W/m2) there is a nonlinear increase in the effective electron concentration and an increase in the lattice parameter; at the same time, the mobility of electrons decreases and μНUS) ~ |τUS|. The energy parameters of the acoustic activation charge carriers process are calculated from the approximation of experimental amplitude changes – Еа ≈ 50 meV and γn(300 K) ≈ 2,5·10-27 m3.

The amplitude dependences (increase) of the relative lattice parameter change (ΔС/С) from the tension τUS have been investigated experimentally at different frequencies. The energy of DX-center transition UDX108 meV and the activation volume of this transition γDX ≈ 6,6·10-27 m3 are calculated from the approximation of the experimental amplitude changes.

The revealed correlation of the magnitude of acoustic induced effects in different experiments allows to build a quantitative energy model of the acoustic action process based on the properties of metastable DX centers. It is shown that the acoustic induced process occurs due to the dimensional displacement of the DX-center atom (a background impurity of silicon atoms) from the non-central position to the centrally symmetric one; herewith DX-center is ionized, one goes into the d0-state. It is believed that the changes are most likely to occur near penetrating dislocations in the barrier layer Al0.2Ga0.8N – acoustic modulated oscillations of the distance between the possible positions of the donor atom lead to a decrease in the barrier to the displacement of the defect.

Keywords: ultrasound, GaN/AlGaN heterostructures, DX-centers, diffraction reflection, Hall effect.


References

1. K. Ye. M. Wang. Solid-State Electron. 2009. 53(2). Р.234.

https://doi.org/10.1016/j.sse.2008.11.010

2. A.E. Belyaev, H.J. von Bardeleben, M.F. Fille et.al. The US-induced quenching of the persistent photocond. related to DX centers in AlGaAs. Mater. Sci. Forum. 1994. 143-147(2). P.1057-1061.

https://doi.org/10.4028/www.scientific.net/MSF.143-147.1057

3. I. A. Buyanova, A. U. Savchuk, M. K. Sheinkman, M. Kittler. Influence of subthreshold ultrasound treatment on the recombination properties of dislocations in GexSi1-x/Si heterostructures. Semicond. Sci. Technol. 1994. 9(11). P. 2042-2046.

https://doi.org/10.1088/0268-1242/9/11/002

4. Ya.M. Olih, M.D. Timochko, V.V. Kalyuzhnij, O.Ye. Byelyayev. Osoblivosti akustoindukovanih zmin elektrofizichnih harakteristik u geterostrukturah GaN/Al0,2Ga0,8N/GaN/AlN. Optoelektronika ta napivprovidnikova tekhnika. 2020. 55. S. 109-116.

https://doi.org/10.15407/iopt.2020.55.109

5. R. Zeisel, M.W. Bayerl, S.T.B. Goennenwein, et al. DX-behavior of Si in AlN. Phys. Rev. B. 2000. 61. R16283.

https://doi.org/10.1103/PhysRevB.61.R16283

6. G.S. Cargill, A. Segmueller, T. F. Kuech, and T. N. Theis. Lattice strain from DX centers and persistent photocarriers in Sn-doped and Si-doped Ga1-xAlxAs. Phys. Rev. B. 1992. 46. P.10078-10085.

https://doi.org/10.1103/PhysRevB.46.10078

7. G.S. Cargill, A. Segmueller, and T. N. Theis. Characterization of lattice strain from DX centers and persistent photocarriers in GaAlAs. Materials Chemistry and Physics. 1995. 42(2). P.138-141.

https://doi.org/10.1016/0254-0584(95)01557-4

8. V. Kladko, A. Kuchuk, A. Naumov, et al. Effect of strain-polarization fields on optical transitions in AlGaN/GaN multi-quantum well structures. Physica E. 2016. 76. P.140-145.

https://doi.org/10.1016/j.physe.2015.10.022

9. M. Iwaya, et al. Control of crystallinity of GaN grown on sapphire substrate by metalorganic vapor phase epitaxy using in situ X-ray diffraction monitoring method. J. Cryst. Growth. 2014. 401 (9). P.367-371.

https://doi.org/10.1016/j.jcrysgro.2013.11.010

10. A.I. Vlasenko, Ya.M. Olih, R.K. Savkina. Akustostimulirovannaya aktivaciya svyazannyh defektov v tverdyh rastvorah CdHgTe. FTP. 1999. 33(4). S. 410-414.

https://doi.org/10.1134/1.1187701

11. B.N. Babencov, S.I. Gorban, I.Ya. Gorodeckij, N.E. Korsunskaya, I.M. Rarenko, M.K. Shejnkman. Vliyanie ultrazvukovoj obrabotki na eksitonnuyu i primesnuyu lyuminescenciyu CdTe. FTP. 1991. 25(7). S.1243-1245.

12. Ya.M. Olikh, M.D. Tymochko, O.Ya.Olikh, and V.A. Shenderovsky. Clusters of Point Defects Near Dislocations as a Tool to Control CdZnTe Electrical Parameters by Ultrasound. Journal of Electronic Materials. 2018. 47(8).Р. 4370-4378.

https://doi.org/10.1007/s11664-018-6332-4

13. K. Alfaramawi. Dislocation scattering-limited electron mobility in wurtzite n-type gallium nitride. Journal of Ovonic Research. 2018. 12 (3). P.147-154.

14. D.Y. Protasov, T.V. Malin, A.V. Tikhonov, et al. Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas. Semiconductors. 2013. 47. Р. 33-44.

https://doi.org/10.1134/S1063782613010181

15. L. Dong, J.V. Mantese, V. Avrutin, Ü. Özgür, H. Morkoç, and S.P. Alpay. Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells. J. Appl. Phys. 2013. 114. Р.043715.

https://doi.org/10.1063/1.4816254

16. D.J. Chadi and K. J. Chang. Theory of the Atomic and Electronic Structure of DX centers in GaAs and AlxGa1−xAs Alloys. Phys. Rev. Lett. 1988.61. P.873-876.

https://doi.org/10.1103/PhysRevLett.61.873

17. Y.-H. Liang and E. Towe. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl. Phys. Rev. 2018. 5.Р. 011107.

https://doi.org/10.1063/1.5009349

Я. М. Оліх, М. Д. Тимочко, В. П. Кладько, О. І. Любченко, О. Є. Бєляєв, В. В. Калюжний

Значення DX–ЦЕНТРІВ для АКУСТОІНДУКОВАНИХ процесів перебудови дефектів В GaN/AlGaN

Проведено співставлення експериментальних результатів амплітудних ефектів (від амплітуди деформації ультразвукової хвилі – напруження τуз) для концентрації електронів та зміни параметра ґратки на одному і тому ж зразку GaN/Al0,2Ga0,8N/GaN/AlN. Експериментально встановлено, що при УЗ навантаженні (частота- 5–10 МГц, амплітуда – до 2·104 Вт/м2) відбувається зростання ефективної концентрації електронів та збільшення параметра ґратки. Виявлена кореляція величини акустоіндукованих ефектів у відмінних експериментах дозволяє побудувати кількісну енергетичну модель процесу акустичної дії, основану на властивостях метастабільних DX–центрів.

Ключові слова: ультразвук, гетероструктури GaN/AlGaN/GaN/AlN, DX-центри, дифракційне відбиття, ефект Холла.