Optoelectron. Semicond. Tech. 58, 195-205 (2023)

Kryuchyn A.A.,1 Petrov V.V.,1 Rubish V.M.,1 Kostyukevych S.O.,2 Kostyukevych K.V. 2

Creation of active optical metasurfaces on films of chalcogenide semiconductors with phase state change

The development of meta-optics is due to human aspirations for the maximum miniaturization of optical elements, the design and control of light fluxes, as well as the improvement of visualization and image processing. Metasurfaces, i.e. arrays with subwavelength distances (smaller than the wavelength of light), and optically thin elements trigger new physical mechanism and phenomena that are very different from those observed in three-dimensional bulk materials. Thus, meta-devices perform complete control and management of the characteristics of the light flux (phase, amplitude, polarization) with the help of one flat layer.

Compared to traditional bulky lenses, metasurface lenses have advantages such as flatness, light weight, and compatibility with semiconductor manufacturing technology. The use of active (reconfigurable) metasurfaces, the characteristics of which can be dynamically rearranged after manufacturing, makes it possible to significantly expand the capabilities of meta-optics. The paper presents the results of the analysis of the properties and technologies of creating optically active metasurfaces for optical image processing and transformation systems. Generalized methods of forming metasurfaces are described: self-organization, selective chemical etching, holographic and lithographic.

To implement the work of active (reconfigured) metasurfaces based on materials with a change in phase state (amorphous/crystalline), heating technologies with electric current pulses of various amplitudes and durations and the action of direct optical radiation are used. The analysis of materials for the formation of optically active metasurfaces and devices based on them that simulate the front of a light wave and work on reflection and transmission is presented. Special attention is paid to the use of photosensitive chalcogenide semiconductors as metamaterials with a phase change.

Examples of materials such as Ge2Sb2Te5 (GST) and AgxInSb2Te (AIST), which have been used for decades in optical data storage and electronic memory devices, are given. A series of novel compositions of optical phase change materials such as Ge2Sb2Se4Te (GSST), Sb2S3, Sb2Se3, Ge2Sb2Te3S2 and In3SbTe2 for optical and photonic applications are also proposed. Direct laser recording on photosensitive films of chalcogenide semiconductors with the use of technological equipment for laser recording of master disks is proposed as a promising method of forming arrays with submicron distances and realizing the work of active metasurfaces.

Key words: active optical metasurfaces, subwave distance, nanostructured elements, semiconductors with phase state change.


1. Ou K., Wan H., Wang G., Zhu J., Dong S., He T., Yang H., Wei Z., Wang Z., Cheng X. Advances in meta-optics and metasurfaces: fundamentals and applications. Nanomaterials (Basel). 2022. 13, №7. P.1235. doi: 10.3390/nano13071235.

2. Femius Koenderink A., Alu A., Polman A. Nanophotonics: shrinking light based technology. Science. 2015. 348. P. 516.

3. Lysiuk V.O., Kostiukevych S.O., Kostiukevych K.V., Koptiukh A.A., Stashchuk V.S. Osoblyvosti fotonnykh krystaliv (ohliad). Optoelektronika i poluprovodnikovaya tekhnika. 2016. 51. S. 91-103.

4. Capasso F. The future and promise of flat optics: a personal perspective. Nanophotonics. 2018. 7, №6. P.953-957.

5. Deng Z.-L., Deng J., Zhuang X., Wang S., Shi T., Wang G.P., Wang Y., Xu J., Cao Y., Wang X. et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci. Appl. 2018. 7. P.78.

6. Raeker B.O., Zheng H., Zhou Y., Kravchenko I.I., Valentine J., Grbic A. All-dielectric meta-optics for high-efficiency independent amplitude and phase manipulation. Adv. Photonics Res. 2022. 3. P. 2100285.

7. Shi Z., Rubin N.A., Park J.S., Capasso F. Nonseparable polarization wavefront transformation. Phys. Rev. Lett. 2022. 129. P.167403.

8. Stewart M.E., Anderton C.R., Thompson L.B., Maria J., Gray S.K., Rogers J.A., Nuzzo R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008. 108, №2. Р. 494-521.

9. Indutnyi I., Ushenin Yu., Hegemann D., Vandenbossche M., Myn’ko V., Shepeliavyi P., Lukaniuk M., Korchovyi A., Khrystosenko R. Enhancing surface plasmon resonance detection using nanostructured Au chips. Nanoscale Res. Lett. 2016. 11. P. 535.

10. Hlubina P., Urbancova P., Pudis D., Goraus M., Jandura D., Ciprian D. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating. Optics Letters. 2019. 44, №22. P. 5602-5605.

11. Kostiukevych S.O., Kostiukevych K.V., Khrystosenko R.V., Koptiukh A.A., Pohoda V.I. Chutlyvyi element sensora poverkhnevykh plazmoniv z termichnoiu modyfikatsiieiu strukturnykh vlastyvostei polimernoi pidkladky. Optoelektronika ta napivprovidnykova tekhnika. 2022. 57. S. 82-92.

12. Kostiukevych K.V., Kriuchyna Ye.A., Kriuchyn A.A., Kostiukevych S.O. Optychni biosensory na osnovi hibrydnykh nanostruktur ta metamaterialiv. Medychna informatyka ta inzheneriia. 2021. 2. S.14-33.

13. Pedersen H.C., Zong W., Sorensen M.H., Thirstrup C. Integrated holographic grating chip for surface plasmon resonance sensing. Optical Engineering. 2004. 43, №11. Р. 2505-2510.

14. Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 2017. 56, №12. P.121907.

15. Khorasaninejad M., Chen W.T., Devlin R.C., Oh J., Zhu A.Y.,  Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016. 352, №6290. P. 1190-1194. doi: 10.1126/science.aaf6644.

16. He Y., Song B., Tang J. Optical metalenses: fundamentals, dispersion manipulation, and applications. Front Optoelectron. 2022. 15, №1. P.24. doi: 10.1007/s12200-022-00017-4.

17. Kang L., Jenkins R.P., Werner D.H. Recent progress in active optical metasurfaces. Advanced Optical Materials. 2019. 7, №14. P.1801813. doi:10.1002/adom.201801813.

18. Petrov V. V., Kriuchyn A. A., Kunytskyi Yu. A., Rubish V. M., Lapchuk A. S., Kostiukevych S. O. Metody nanolitohrafii. K.: Nauk. Dumka, 2015. 262 s.

19. Passoni L., Criante L., Fumagalli F. et al. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano. 2014. 8, №. 12. P. 12167–12174.

20. Peng Y., Schneider G.J., Prather D.W., Wetzel E.D., O’Brien D.J. Fabrication of three-dimensional photonic crystals with multilayer photolithography. Opt. Exp. 2005. 13. P. 2370-2376.

21. Juodkazis S., Rosa L., Bauerdick S., Peto L., El-Ganainy R., John S. Sculpturing of photonic crystals by ion beam lithography: Towards complete photonic bandgap at visible wavelengths. Opt. Exp. 2011. 19. P. 5802-5810.

22. Brueck S.R.J. Optical and interferometric lithography – nanotechnology enablers. Proc. IEEE. 2005. 93, №10. P. 1704-1721.

23. Petrov V. V., Kriuchyn A. A., Kunytskyi Yu. A., Rubish V. M., Lapchuk A. S., Kostiukevych S.O. Metody nanolitohrafii K.: Nauk. Dumka, 2015. 262 s.

24. Lasagni A.F., Roch T., Berger J., Kunze T., Lang V., Beyer E. To use or not to use (direct laser interference patterning), that is the question. Proc. SPIE. 2015. 9351. P. 935115.

25. Shoji S., Kawata S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 2000. 76, №19. P. 2668-2670.

26. Roch T., Benke D., Milles S. et al. Dependence between friction of laser interference patterned carbon and the thin film morphology. Diamond Related Mater. 2015. 55. P. 16-21.

27. Zhang Y., Fowler C., Liang J., et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 2021. 16. Р.661–666.

28. Petrov. V.V., Kriuchyn A. A., Kostiukevych S. O., Rubish V. M. Neorhanichna fotolitohrafiia. Monohrafiia.Nats. akad. nauk Ukrainy, In-t problem reiestratsii informatsii, In-t fizyky napivprovidnykiv. K.: IMF NANU, 2007. 195 s.

29. Petrov V. V., Lytvyn P. M., Trunov M. L., Kriuchyn A. A., Beliak Ye. V., Rubish V. M., Kostiukevych S. O., Koptiukh A. A. Metody formuvannia nanorozmirnykh struktur na plivkakh khalkohenidnykh sklopodibnykh napivprovidnykiv. Reiestratsiia, zberihannia i obrobka danykh. 2016. 18, №1. S. 3-13.

30. Popescu C.-C., Phuong Dao K., Ranno L., et al. An open-source multi-functional testing platform for optical phase change materials.

31 Lepeshov S., Krasnok A. Tunable phase-change metasurfaces. Nature Nanotechnology. 2021. – 16(1-2). 10.1038/s41565-021-00892-6.

32. Abdollahramezani S., Taghinejad H., Fan T. Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture. Nanophotonics. 2022. 11, №17. Р.3883-3893.

33. Abed O., Yousefi L. Tunable metasurfaces using phase change materials and transparent graphene heaters. Opt. Express. 2020. 26. Р. 33876-33889.

34. Shalaginov M.Y., Campbell S.D., An S. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics. 2020. 9, №11. P.3505-3534.

35. Wang Q., Rogers E., Gholipour B., et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photon 2016. 10. Р. 60–65.

36. Choi C., Lee S., Mun S., Lee G., Sung J., Yun H., Lee B. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband operating wavefront switch. Advanced Optical Materials. 2019. P.1900171.

37. Dong G., Qin C., Lv T., et al. Dynamic chiroptical responses in transmissive metamaterial using phase-change material. J. Phys. D: Appl. Phys. 2020. 53. Р. 285104. doi 10.1088/1361-6463/ab8516.

38. Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials. 2017. 10, №9. P.1046.

39. Mikheeva E., Koshelev K., Choi Duk-Yong. et al. Photosensitive chalcogenide metasurfaces supporting bound states in the continuum. Opt. Express. 2019. 27. Р. 33847-33853.

40. Li Z.W., Qi R., Yang Q., Wang Y., et al. Fabrication of Fresnel zone plate in chalcogenide glass and fiber end with femtosecond laser direct writing. Infrared Physics & Technology. 2021. 120. Р.104004.

41. Joërg A., Lumeau J. Fabrication of binary volumetric diffractive optical elements in photosensitive chalcogenide AMTIR-1 layers. Optics Letters. 2015. 40, №14. Р. 3233.

42. Petrov V. V., Kriuchyn A. A., Shanoilo S.M., Kravets V.H., Kossko I.O., Beliak Ye.V., Lapchuk A.S., Kostiukevych S.O. Nadshchilnyi optychnyi zapys informatsii. Nats. akad. nauk Ukrainy, In-t problem reiestratsii informatsii. Kyiv: NAN Ukrainy, 2009. 282 s. ISBN 978-966-02-5027-7.

43. Kang L., Jenkins R.P., Werner D.H. Recent progress in active optical metasurfaces. Advanced Optical Materials. 2019. 7, №14. P.1801813. doi:10.1002/adom.201801813.

44. Kryuchyn A.A., Petrov V.V., Kostyukevych S.O. High density optical recording in thin chalcogenide films. Journal of Optoelectronics and Advanced Materials. 2011. 13 (November-December). Р.1487-1492.

45. Kryuchyn A.A., Petrov V.V., Rubish V.M., Trunov M.L., Lytvyn P.M., Kostyukevich S.A. Formation of nanoscale sructures on chalcogenide films. Phys. Status Solidi B. 2017. 15 (September). P.1700405.

46. Petrov V.V., Kryuchyn A.A., Rubish V.M., Trunov M.L. Recording of micro/nanosized elements on thin films of glassy chalcogenide semiconductors by optical radiation / in Chalcogenides - Preparation and Applications, Editor Prof. Dhanasekaran Vikraman/ Published: March 5th, 2022. ISBN: 978-1-80355-660-4.

1Крючин А. А., 1Петров В.В., 1 Рубіш В. М., 2Костюкевич С.О., 2Костюкевич К.В.

Створення активних оптичних метаповерхонь на плівках халькогенідних напівпровідників зі зміною фазового стану

Представлено результати аналізу властивостей і технологій створення оптичних метаповерхонь для систем обробки та трансформації оптичних зображень. Визначено базові технології і матеріали для виготовлення оптичних активних метаповерхонь. Особливу увагу приділено аналізу використання фоточутливих халькогенідних напівпровідників як перспективних матеріалів зі зміною фазового стану для побудови перестроюваних метаповерхонь.

Ключові слова: активні метаповерхні, субхвильові відстані, наноструктуровані елементи, напівпровідники зі зміною фазового стану.