https://doi.org/10.15407/jopt.2016.51.031
Optoelectron. Semicond. Tech. 51, 31-42 (2016)
A.I. Vlasenko, V.P. Veleschuk, Z.K. Vlasenko, D.N. Khmil’, O.M. Kamuz, V.V. Borshch
NON-DESTRUCTIVE CONTROL AND DIAGNOSTICS OF LED GaN STRUCTURES BY USING MICROPLASMAS (REVIEW)
Results of researching the controlled microplasma breakdown in the LED InGaN/GaN heterostructures and various GaN, GaAs, GaP, SiC, Si, ZnO structures have been generalized. It has been ascertained that parameters of the microplasmas in LEDs are directly related with their functional parameters. It has been shown that non-destructive express control and diagnostics of power InGaN/GaN LEDs are possible when being based on the luminescent and electric parameters of microplasmas. The electroluminescence spectra of the microplasmas have been researched and the sources of microplasmas in the InGaN/GaN heterostructures have been determined.
Keywods: LED, InGaN/GaN, microplasma, diagnostics.
References
1. III-Nitride Devices and Nanoengineering. Editor Zhe Chuan Feng. National Taiwan University. Publ. by Imperial College Press, 2008.
2. Morkoc H. Handbook of Nitride Semiconductors and Devices: GaN-based Optical and Electronic Devices. Vol. 3. Wiley-VCH, 2009.
https://doi.org/10.1002/9783527628445
3. Reshchikov M.A., Morkoç H. Luminescence properties of defects in GaN (Review). J. Appl. Phys. 2005. 97. Р. 061301(95).
https://doi.org/10.1063/1.1868059
4. Grehov I.V., Serezhkin Yu.N. Lavinnyj proboj p-n perehoda v poluprovodnikah. L.: Energiya, 1980. (in Russian)
5. Konakova R.V., Kordosh P., Thorik Yu.A., Fajnberg V.I., Shtofanik F. Prognozirovanie nadezhnosti poluprovodnikovyh lavinnyh diodov. Kiev, Naukova dumka, 1986. (in Russian)
6. Patent na korisnu model № 47386, Ukrayina, MPK G01R 31/26, G01R 19/28, G01R 27/04. Aparat dlya diagnostiki nadijnosti napivprovidnikovih nadpotuzhnih impulsnih lavinoprolotnih diodiv (LPD). O.Ye. Byelyayev, M.S. Boltovec, R.V. Konakova, Ya.Ya. Kudrik, V.V. Shinkarenko. № u2009094934; zayavl. 15.09.2009; opubl. 25.01.2010. (in Ukrainian)
7. Zhang S.K., Wang W.B., Dabiran A.M. et al. Avalanche breakdown and breakdown luminescence of AlGaN multiquantum wells. Appl. Phys. Lett. 2005. 87, No. 26. P. 262113(3).
https://doi.org/10.1063/1.2158489
8. Osinsky A., Shur M.S., Gaska R., Chen Q. Avalanche breakdown and breakdown luminescence in p-π-n GaN diodes. Electron. Lett. 1998. 34, No. 7. Р. 691-692.
https://doi.org/10.1049/el:19980535
9. Zanoni E., Danesin F., Meneghini M. et al. Localized damage in AlGaN/GaN HEMTs induced by reverse-bias testing. IEEE Electron. Device Lett. 2009. 30, No. 5. Р. 427-429.
https://doi.org/10.1109/LED.2009.2016440
10. Gradinaru G., Kao N.C., Gaska R. et al. Bulk breakdown in AlGaN/GaN HFETs. MRS Spring Meeting. 1998. 512. P. 309-314.
https://doi.org/10.1557/PROC-512-309
11. Kovalev A.N., Manyahin F.I., Kudryashov V.E. i dr. Lyuminescenciya p-n-geterostruktur InGaN/AlGaN/GaN pri udarnoj ionizacii. FTP. 1998. 32, № 1. S. 63-67. (in Russian)
https://doi.org/10.1134/1.1187358
12. Kovalev A.N., Manyahin F.I., Kudryashov V.E. i dr Izmeneniya lyuminescentnyh elektricheskih svojstv svetodiodov iz geterostruktur InGaN/AlGaN/GaN pri dlitelnoj rabote. FTP. 1999. 33, № 2. S. 224- 232. (in Russian)
13. Chen H. Hot carrier-induced emission from the InGaN/GaN light-emitting diode by characterizing reverse-bias electroluminescence. Appl. Phys. Lett. 2013. 102, No. 16. P. 162106.
https://doi.org/10.1063/1.4803016
14. Chen H., Kao C.-H., Lu T.-C., Shei S.-C. Optical and electrical characterization of reverse bias luminescence in InGaN light emitting diodes. Optica Applicata. 2011. XLI, № 1. Р. 195-205.
15. Chen H., Yeh Y.-M., Liao C.H. et al. Optical characterizations and reverse-bias electroluminescence observation for reliability investigations of the InGaN light emitting diode. Microelectron. Eng. 2013. 101. P.42-46.
https://doi.org/10.1016/j.mee.2012.08.017
16. Chen H. and Lu T.-C. Reverse-bias electroluminescence observation for reliability investigations of the InGaN LED. ECS Transactions. 2010. 27, No. 1. P. 237-242.
https://doi.org/10.1149/1.3360625
17. Chen H., Kao C.-H., Lu T.-C. Characterizing Reverse-bias Electroluminescence of InGaN/GaN LEDs. CS MANTECH (Compound Semiconductor Manufacturing Technology) Conference. May 16-19, 2011. Palm Springs, California, USA, 4 p.
18. Chen N.C., Wang Y.N., Wang Y.S. et al. Damage of light-emitting diodes induced by high reverse-bias stress. J. Cryst. Growth. 2009. 311, No. 3. Р. 994-997.
https://doi.org/10.1016/j.jcrysgro.2008.09.123
19. Meneghini M., Trivellin N., Pavesi M. et al. Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes. Appl. Phys. Lett. 2009. 95, No. 17. P. 173507(3).
https://doi.org/10.1063/1.3257368
20. Meneghini M., Vaccari S., Trivellin N. et al. Analysis of defect-related localized emission processes in InGaN/GaN-based LEDs IEEE Trans. Еlectron. Devices. 2012. 59, No. 5. P. 1416-1422.
https://doi.org/10.1109/TED.2012.2186970
21. Cao X.A., LeBoeuf S.F., Kim K.H. et al. Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes. Solid-State Electron. 2002. 46, No. 12. P. 2291-2294.
https://doi.org/10.1016/S0038-1101(02)00190-9
22. Tharian J. Degradation- and Failure Mode Analysis of III-V Nitride Devices. Proc. 14th IPFA, IEEE. Bangalore, India. 2007. P. 284-287.
https://doi.org/10.1109/IPFA.2007.4378102
23. Veleshuk V.P., Vlasenko O.I., Kiselyuk M.P., Lyashenko O.V. Mikroplazmennyj proboj InGaN/GaN- geterostruktur moshnyh svetodiodov. Zhurnal prikladnoj spektroskopii. 2013. 80, № 1. S. 121-127. (in Russian)
24. Veleshuk V.P., Vlasenko A.I., Kiselyuk M.P., Vlasenko Z.K., Hmil D.N., Borsh V.V. Smeshenie spektrov elektrolyuminescencii InhGa1-hN/GaN struktur s razlichnym sostavom indiya i materialom podlozhki, obuslovlennoe effektom Shtarka i mehanicheskimi napryazheniyami. FTP. 2015. 49, № 8. S. 1031-1035. (in Russian)
https://doi.org/10.1134/S1063782615080229
25. Veleshchuk V.P., Vlasenko A.I., Kiselyuk M.P., Vlasenko Z.K., Khmil' D.N., Borshch V.V. Electroluminescence of ІnGaN/GaN heterostructures at the reverse bias and nitrogen temperature. Optica Applicata. 2015. 45, № 4. P. 535-543.
26. Veleschuk V.P., Vlasenko A.I., Vlasenko Z.K., Kisselyuk M.P. and Borshch V.V. Non-destructive control of critical defects and diagnostics of InGaN/GaN heterostructures in power LEDs by using their microplasma characteristics. Mater. Res. Exp. 2015. № 2. Р. 055902(6).
https://doi.org/10.1088/2053-1591/2/5/055902
27. Veleschuk V.P., Vlasenko A.I., Kisselyuk M.P., Lyashenko O.V. Microplasmas avalanche breakdown as a diagnostic tool and reliability appreciating of the InGaN/GaN high-power LEDs. Proc. 22nd Intern. Conf. on Noise and Fluctuations (ICNF). June 24-28, 2013. Montpellier, France. IEEE Xplore. P. 1-3.
https://doi.org/10.1109/ICNF.2013.6578938
28. Bulyarskij S.V., Serezhkin Yu.N., Ionychev V.K. Statisticheskaya zaderzhka proboya mikroplazmy v fosfidgallievyh p-n-perehodah. FTP. 1999. 33, №11. S. 1345-1349. (in Russian)
https://doi.org/10.1134/1.1187852
29. Bulyarskij S.V., Serezhkin Yu.N., Ionychev V.K. Vliyanie lovushek na zapusk laviny pri proboe fosfidgallievyh p-n-perehodov. Pisma v ZhTF. 1999. 25, №5. S. 9-13. (in Russian)
30. Gontaruk A.N., Korbutyak D.V., Korbut E.V. i dr. Degradacionno-relaksacionnye yavleniya v svetoizluchayushih p-n-strukturah na osnove fosfida galliya, stimulirovannye ultrazvukom. Pisma v ZhTF. 1998. 24, № 15. S. 64-68. 41(in Russian)
31. Koktavý P., Šikula J. Reverse biased p-n junction noise in GaAsP diodes with avalanche breakdown induced microplasmas. Fluctuation and Noise Letters (FNL). 2002. 2, № 2. Р. L65-L70.
https://doi.org/10.1142/S0219477502000622
32. Koktavy P., Macku R., Paracka P., Krcal O. Microplasma noise as a tool for p-n-junctions diagnostics. WSEAS Trans. Electrons. 2007. 4, No. 9. Р. 186-191.
33. Lahbabi M., Ahaitouf A., Fliyou M. et al. Analysis of electroluminescence spectra of silicon and gallium arsenide p-n junctions in avalanche breakdown. J. Appl. Phys. 2004. 95. Р. 1822.
https://doi.org/10.1063/1.1643188
34. Kikawa J., Yoshida S. and Itoh Y. Electroluminescence studies under forward and reverse bias conditions of a nitride-rich GaN1−xPx SQW structure LED grown by laser-assisted metal-organic chemical vapor deposition. Solid-State Electron. 2003. 47, No. 3. P. 523-527.
https://doi.org/10.1016/S0038-1101(02)00406-9
35. Qin Q., Guo L.-W., Zhou Z.-T. et al. Electroluminescence of an n-ZnO/p-GaN heterojunction under forward and reverse biases. Chinese Phys. Lett. 2005. 22, No. 9. P. 2298-2301.
https://doi.org/10.1088/0256-307X/22/9/044
36. Sadaf J.R., Israr M.Q., Kishwar S. et al. Forward- and reverse-biased electroluminescence behavior of chemically fabricated ZnO nanotubes/GaN interface. Semiconductor Science and Technology. 2011.
https://doi.org/10.1088/0268-1242/26/7/075003
26, No. 7. P. 075003. 37. Wang X., Cole J., Dabiran A.M., Jacobs H.O. Electroluminescence of ZnO nanowire/p-GaN heterojunction light emitting diodes. NSTI-Nanotech. 2007. 4. Р. 526-529.
38. Vanek J., Koktavy P., Dolensky J., Vesely A., Chobola Z., Paracka P. Micro-plasma luminescence and signal noise used to solar cells defects diagnostic. AIP Conf. Proc., 20th Inter. Conf. on Noice and Fluctuations (ICNF- 2009). 2009. 1129. Р. 641-644.
39. Breitenstein O., Bauer J., Bothe K. et al. Understanding junction breakdown in multicrystalline solar cells. Review. J. Appl. Phys. 2011. 109, No. 7. P. 071101(10).
https://doi.org/10.1063/1.3562200
40. Breitenstein O., Bauer J., Wagner J.-M. et al. Defect-іnduced breakdown in multicrystalline silicon solar cells. IEEE Trans. Еlectron. Devices. 2010. 57, No. 9. P. 2227-2234.
https://doi.org/10.1109/TED.2010.2053866
41. Bauer J., Wagner J.-M., Lotnyk A. et al. Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits. phys. status solidi RRL. 2009. 3, No. 2. Р. 40-42.
https://doi.org/10.1002/pssr.200802250
42. Lausch D., Petter K., von Wenckstern H., Grundmann M. Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells. phys. status solidi RRL. 2009. 3, No. 2-3. P. 70-72.
https://doi.org/10.1002/pssr.200802264
43. Bothe K., Ramspeck K., Hinken D. et al. Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells. J. Appl. Phys. 2009. 106. Р. 104510.
https://doi.org/10.1063/1.3256199
44. Breitenstein O., Bauer J., Wagner J.-M. et al. Physical mechanisms of breakdown in multicrystalline silicon solar cells. IEEE Xplore. 2009. No. 9. P. 000181-000186.
https://doi.org/10.1109/PVSC.2009.5411700
45. Lesniak M., Holt D.B. Defect microstructure and microplasmas in silicon avalanche photodiodes. J. Mater. Sci. 1987. 22, No. 10. Р. 3547-3555.
https://doi.org/10.1007/BF01161457
46. Shmagin V.B., Remizov D.Yu., Krasilnik Z.F. i dr. Vliyanie haraktera proboya p-n-perehoda na intensivnost i effektivnost vozbuzhdeniya elektrolyuminescencii ionov Er3+ v epitaksialnyh sloyah Si:Er, poluchennyh metodom sublimacionnoj molekulyarno-luchevoj epitaksii. FTT. 2004. 46, № 1. S. 110-113. (in Russian)
https://doi.org/10.1134/1.1641934
47. Emelyanov A.M., Nikolaev Yu.A., Sobolev N.A. Priroda kraevogo pika elektrolyuminescencii v rezhime proboya Si:(Er,O)-diodov. FTP. 2002. 36, № 4. S. 453-456. (in Russian)
https://doi.org/10.1134/1.1469193
48. Ionychev V.K., Rebrov A.N. Issledovanie glubokih centrov v mikroplazmennyh kanalah kremnievyh lavinnyh epitaksialnyh diodov. FTP. 2009. 43, № 7. S. 980-984. (in Russian)
https://doi.org/10.1134/S1063782609070240
49. Marinov O., Deen M.J., Jimenez Tejada J.A. Theory and physical explanation of the microplasma fluctuation and noise in avalanche breakdown of the silicon diodes. J. Appl. Phys. 2007. 101. P. 064515(21).
https://doi.org/10.1063/1.2654973
50. Musaev A.M. Mehanizm vyklyucheniya mikroplazm pri lavinnom proboe p-n struktur kremniya. FTP. 2016. 50, № 10. S. 1370-1373. (in Russian)
https://doi.org/10.3109/10826084.2015.1065146
51. Vyzhigin Yu.V., Gresserov B.N., Sobolev N.A. Issledovanie vliyaniya glubokih urovnej na mikroplazmennyj proboj p-n perehodov. FTP. 1988. 22, № 3. S. 536-538. (in Russian)
52. Dobrovolskij V.N., Palcev I.E., Romanov A.V. Kratkovremennoe vklyuchenie mikroplazm pri napryazhenii nizhe porogovogo. FTP. 1997. 31, № 4. S. 509-510. (in Russian)
53. Dacko B.I. Chislennoe modelirovanie yavleniya nestabilnosti mikroplazmy. FTP. 1997. 31, № 2. S. 186-190. (in Russian)
54. Soloviev S.I., Sandvik P.M., Vertiatchikh A. et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater. Sci. Forum. 2009. 600-603. P. 1211-1214.
https://doi.org/10.4028/www.scientific.net/MSF.600-603.1211
55. Neudeck P.G., Huang W., Dudley M. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (250 V) 4H-SiC p-n-junction diodes-Part I: DC properties. IEEE Trans. Еlectron. Devices. 1999. 46, No. 3. P. 478-484.
https://doi.org/10.1109/16.748865
56. Neudeck P.G., Huang W., Dudley M. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+ n junction rectifiers. Solid-State Electron. 1998. 42, No. 12. P. 2157-2164.
https://doi.org/10.1016/S0038-1101(98)00211-1
57. Singh R. Reliability and performance limitations in SiC power devices. Microelectronics Reliability. 2006. 46. P. 713-730.
https://doi.org/10.1016/j.microrel.2005.10.013
58. Genkin A.M., Genkina V.K., Germash L.P. Kinetika probojnoj elektrolyuminescencii v p-n-strukturah na karbide kremniya. ZhTF. 2000. 17, № 4. S. 52-55. (in Russian)
59. Patent na korisnu model № 85050 Ukrayina, MPK G01R 31/26. Sposib diagnostiki ta harakterizaciyi svitlodiodnih GaN struktur po elektrolyuminescenciyi mikroplazm. O.I. Vlasenko, V.P. Veleshuk, V.I. Bosij M.P. Kiselyuk, Z.K. Vlasenko, O.V. Lyashenko, V.V. Borsh. № u201305320; zayavl. 24.04.2013; opubl. 11.11.2013. (in Ukrainian)
60. Patent na korisnu model № 76641 Ukrayina, MPK G01R 31/26. Sposib kontrolyu kritichnih tehnologichnih defektiv u svitlodiodnih strukturah na osnovi GaN. O.I. Vlasenko, V.P. Veleshuk, M.P. Kiselyuk, O.V. Lyashenko, M.I. Bojko. № u201207821; zayavl. 25.06.2012; opubl. 10.01.2013. (in Ukrainian)
61. Patent na korisnu model № 89047 Ukrayina, MPK G01R 31/26. Sposib ekspresnogo kontrolyu kritichnih defektiv u svitlodiodnih strukturah na osnovi GaN. O.I. Vlasenko, V.P. Veleshuk, M.P. Kiselyuk, Z.K. Vlasenko. № u201312631; zayavl. 28.10.2013; opubl. 10.04.2014. (in Ukrainian)
62. Patent na korisnu model № 87818 Ukrayina, MPK G01R 1/00. Sposib prihovanogo markuvannya ob'yekta i jogo rozpiznavannya. O.I. Vlasenko, V.I. Bosij, M.P. Kiselyuk, V.P. Veleshuk, O.V. Lyashenko. № u201308608; zayavl. 08.07.2013; opubl. 25.02.2014. (in Ukrainian)
63. Patent Rossii № 2357263, MPK G01R31/26. Sposob otbrakovki poluprovodnikovyh izdelij. M.I. Gorlov, A.P. Zharkih. № 2006357263/28; zayavl. 28.01.2008; opubl. 27.05.2009. (in Russian)
64. Patent Rossii № 2316013, MPK G01R31/26. Sposob razbrakovki poluprovodnikovyh izdelij na plastine. M.I. Gorlov, A.P. Zharkih. № 2006114203/28; zayavl. 25.04.2006; opubl. 27.01.2008. (in Russian)
65. Patent Rossii № 2234104, MPK G01R31/26. Sposob opredeleniya potencialno nestabilnyh poluprovodnikovyh priborov. M.I. Gorlov, V.A. Emelyanov, A.P. Zharkih, D.Yu. Smirnov. № 2006113858/28; zayavl. 24.04.2006; opubl. 27.09.2007. (in Russian)
66. Patent Rossii № 93030298, MPK G01R31/26. Sposob nerazrushayushego kontrolya kachestva i otbrakovki nenadezhnyh poluprovodnikovyh priborov so skrytymi proizvodstvennymi defektami. N.I. Pinyaev. № 93030298; zayavl. 01.06.1993; opubl. 10.11.1995. (in Russian)
67. Patent Rossii № 2185684, MPK H01L21/66. Sposob kontrolya defektnosti plenok kremniya na dielektricheskih podlozhkah. N.D. Latysheva, V.D. Skupov, V.K. Smolin. № 2006185684; zayavl. 23.06.2000; opubl. 20.07.2002. (in Russian)
68. Patent Rossii № 2436076, MPK G01N23/20. Sposob kontrolya defektnosti i uprugoj deformacii v sloyah poluprovodnikovyh geterostruktur. K.L. Enisherlova-Velyasheva, A.V. Lyutcau, E.M. Temper, Yu.V. Kolkovskij. № 2006436076; zayavl. 28.04.2010; opubl. 28.04.2011. (in Russian)
69. Patent Rossii № 2442145, MPK G01N23/207. Sposob strukturnoj diagnostiki poluprovodnikovyh mnogoslojnyh struktur (varianty). K.L. Enisherlova-Velyasheva, A.V. Lyutcau, E.M. Temper, Yu.V. Kolkovskij. № 2006442145; zayavl. 30.11.2010; opubl. 30.11.2010. (in Russian)
70. Mironov V.L. Skaniruyushaya zondovaya mikroskopiya tverdotelnyh nanostruktur: diss. … d-ra fiz.-mat. nauk, 01.04.01. Nizhnij Novgorod, 2009. (in Russian)
71. Patent Rossii № 2403648, MPK H01L21/66. Sposob vyyavleniya epitaksialnyh defektov dislokacij. T.A. Ismailov, B.A. Shangereeva, A.R. Shahmaeva. № 2006403648; zayavl. 08.05.2009; opubl. 08.05.2009. (in Russian)
72. Zhuang D., Edgar J.H. Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R. 2005. 48. P. 1-46.
https://doi.org/10.1016/j.mser.2004.11.002
73. Patent Rossii № 2435157, MPK G01N21/63. Cposob issledovaniya lyuminescentnyh svojstv materiala s prostranstvennym mikro- ili nanomasshtabnym razresheniem. I.A. Vajnshtejn, A.S. Vohmincev. № 2006435157; zayavl. 11.05.2010; opubl. 11.05.2010. (in Russian)
74. Zamoryanskaya M.V. Katodolyuminescenciya shirokozonnyh materialov i nano-geterostruktur na ih osnove: avtoref. diss. … dokt. fiz.-mat. nauk, spec. 01.04.07. Sankt-Peterburg, 2012. (in Russian)
75. Lei H., Leipner H.S., Schreiber J., Weyher J.L. Raman and cathodoluminescence study of dislocations in GaN. J. Appl. Phys. 2002. 92, No. 11. Р. 6666-6670.
https://doi.org/10.1063/1.1518793
В.П. Велещук, О.І. Власенко, З.К. Власенко, Д.М. Хміль, О.М. Камуз, В.В. Борщ1
НЕРУЙНІВНИЙ КОНТРОЛЬ ТА ДІАГНОСТИКА СВІТЛОДІОДНИХ СТРУКТУР НА ОСНОВІ GаN ЗА МІКРОПЛАЗМАМИ (ОГЛЯД)
Узагальнено матеріал з дослідження мікроплазмового контрольованого пробою в InGaN/GaN гетероструктурах світлодіодів та в різноманітних GaN, GaAs, GaP, SiC, Si, ZnO структурах. Установлено, що характеристики мікроплазм світлодіодних структур прямо пов’язані з їх функціональними параметрами. Показано, що за люмінесцентними та електричними характеристиками мікроплазм можливі експресний неруйнівний контроль та діагностика ІnGaN/GaN потужних світлодіодів. Досліджено спектри електролюмінесценції мікроплазм та встановлено джерела мікроплазм в ІnGaN/GaN гетероструктурах.
Ключові слова: світлодіод, InGaN/GaN, мікроплазми, діагностика.