https://doi.org/10.15407/jopt.2018.53.060

Optoelectron. Semicond. Tech. 53, 60-82 (2018)

A.V. Sukach, V.V. Tetyorkin, A.I. Tkachuk, S.P. Trotsenko

InAs PHOTODIODES (REVIEW. PART IV)

The main types of noise in infrared photodiodes based on InSb and InAs are analyzed. Experimental and theoretical studies of noise in IR photodiodes are necessary for realization of their threshold parameters, prediction of degradation of parameters and characteristics of the photodetector, possible failures, stability and durability. The present state of experimental and theoretical studies of thermal, ірще, generation-recombination and radiation noise in photodiodes is considered. Particular attention is paid to the results of research of low-frequency noise of 1/f type. A correlation between the magnitude of 1/f noise and tunneling current in InSb and InAs photodiodes is established. Experimental results are discussed within the framework of the inhomogeneous p-n junction model. The model assumes that the tunneling current flows through the regions with high defects concentration, which differs significantly from the average one. Tunneling in these regions occurs via local levels at the middle of the bandgap. The proposed model of 1/f noise is based on the experimentally established fact of the presence of two conduction paths in InAs and InSb p-n junctions, caused by dislocations crossing the depletion region. This results in fluctuations of the junction resistance, which may be regarded as a main reason for appearance of 1/f noise in InSb and InAs photodiodes. The calculations of low-frequency noise using existing theoretical models are carried out. It is shown that the threshold parameters of diffusion photodiodes on InSb are critically dependent on the structural and electrical homogeneity of the n-region of 80 the junction. It is pointed out that identification of tunneling mechanisms in InSb p-n junctions requires additional research. It is obvious that the basic assumption in the existing theoretical models of the uniform distribution of defects needed to obtain analytical expressions for direct and reverse current-voltage characteristics does not correspond to the real distribution of defects in InSb and InAs, made by conventional methods of diffusion and implantation. The threshold parameters of infrared photodiodes (sensitivity, detectivity, dynamic resistance-area product) are analyzed.

Key words: InSb photodiode, 1/f noise, tunnel current, inhomogeneous p-n junction.

References

1. Van der Zil A. Fluktuacionnye yavleniya v poluprovodnikah. M.: IL, 1961. (in Russian)

2. Van der Zil A. Shumy pri izmereniyah. M.: Mir, 1979. (in Russian)

3. Van der Ziel A. Noise in Solid State Devices and Circuits. John Wiley & Sons, New York, 1986.

4. Bukingem M. Shumy v elektronnyh priborah i sistemah. M.: Mir, 1986. (in Russian)

5. Lukyanchikova N.B. Fluktuacionnye yavleniya v poluprovodnikah i poluprovodnikovyh priborah. M.: Radio i svyaz, 1990. (in Russian)

6. Robinson F.H.X. Shumy i fluktuacii v elektronnyh shemah i cepyah. M.: Atomizdat, 1980. (in Russian)

7. Rogalskij A. Infrakrasnye detektory. Novosibirsk: Nauka, 2003. (in Russian)

8. Kurbatov L.N. Optoelektronika vidimogo i infrakrasnogo diapazonov spektra. M.: Izd-vo MFTI, 1999. (in Russian)

9. Sukach A.V., Tetorkin V.V., Tkachuk A.I., Trocenko S.P. InSb fotodiodi (Oglyad. Chastina III). OPT. 2017. № 52. (in Ukrainian)

https://doi.org/10.15407/jopt.2017.52.005

10. Van Vliet K.M. Noise limitations in solid state photodetectors. Appl. Opt. 1967. 6. P. 1145-1169.

https://doi.org/10.1364/AO.6.001145

11. Van Vliet K.M. Noise sources in transport equations associated with ambipolar diffusion and Shockley-Read recombination. Solid-State Electron. 1970. 13. P. 649-657.

https://doi.org/10.1016/0038-1101(70)90143-7

12. Dereniak E.L., Boreman G.D. Infrared Detectors and Systems. John Wiley & Sons, New York. 1996.

13. Junhao Chu, Arden Sher. Device Physics of Narrow Gap Semiconductors. Springer, 2010.

14. Van der Ziel A., Chenette E.R. Noise in solid state devices. Adv. Electron. Phys. 1978. 46. P. 313.

https://doi.org/10.1016/S0065-2539(08)60414-X

15. Kogan Sh. 1/f noise and random telegraph noise. In: Electronic Noise and Fluctuations in Solids, Cambridge University Press, 1996. Р. 203-286.

https://doi.org/10.1017/CBO9780511551666.009

16. Tetyorkin V., Sukach A. and Tkachuk A. Infrared Photodiodes on II-VI and III-V Narrow-Gap Semiconductors, in: Photodiodes - From Fundamentals to Applications, Ilgu Yun (Ed.), INTECH, 2012.

https://doi.org/10.5772/52930

17. McWhorter A.L. Semiconductor Surface Physics. Burstein E., Kingston R.H., McWhorter A.L. (Eds.). University of Pennsylvania Philadelphia, 1957. P. 207.

18. Tang X., van Weltenis R.G., van Setten F.M. and Bosch A.J. Oxidation of the InSb surface at room temperature. Semicond. Sci. Technol. 1986. 1. P. 355-365.

https://doi.org/10.1088/0268-1242/1/6/004

19. Hooge F.N. 1/f noise is no surface effect. Phys. Lett. 1969. A29. P. 139-140.

https://doi.org/10.1016/0375-9601(69)90076-0

20. Hooge F.N. The relation between 1/f noise and number of electrons. Physica B. 1990. 162. P. 334-352.

https://doi.org/10.1016/0921-4526(90)90030-X

21. van der Ziel A. Flicker noise in electronic devices. Adv. Electron. Phys. 1979. 49. P. 225-297.

https://doi.org/10.1016/S0065-2539(08)60768-4

22. Kleinpenning T.G.M., Bell D.A. Hall effect noise: fluctuations in number or mobility? Physica. 1976. 81B. P. 301-304.

https://doi.org/10.1016/0378-4363(76)90065-6

23. Kleinpenning T.G.M. 1/f noise in p-n junction diodes. J. Vac. Sci. Technol. 1985. A3, No 1. P. 176-182.

https://doi.org/10.1116/1.573194

24. Hooge F.N., Kleinpenning T.G, Vandamme L.K.J. Experimental studies on 1/f noise. Reports on Progress in Physics. 1981. 44, No 3. P. 479-532.

https://doi.org/10.1088/0034-4885/44/5/001

25. van der Ziel A., Fang P., He L., Wu X.L., van Rheenen A.D., and Handel P.H. 1/f noise characterisation of n+-p and p-i-n Hg1-xCdxTe detectors. J. Vac. Sci. Technol. 1989. A7, No 2. P. 550-554.

https://doi.org/10.1116/1.576218

26. www.galaxywafer.com; www.wafertech.co.uk.

27. Tetyorkin V., Sukach A. and Tkachuk A. InAs infrared photodiodes, in: Advances in Photodiode. Ed. GianFranco Dalla Betta, INTECH, 2011. P. 427-446.

https://doi.org/10.5772/14084

28. Sukach A.V., Tetyorkin V.V., Krolevec N.M. Tunneling current via dislocations in InAs and InSb infrared photodiodes. SPQEO. 2011. 14, No 4. P. 416-420.

https://doi.org/10.15407/spqeo14.04.416

29. Sukach A.V., Tetyorkin V.V., Tkachuk A.I. Carrier transport mechanisms in reverse biased InSb p-n functions. SPQEO. 2015. 18, No 3. P. 267-271.

https://doi.org/10.15407/spqeo18.03.267

30. Sukach A.V., Tetyorkin V.V., Tkachuk A.I. Electrical properties of InSb p-n junctions prepared by diffusion methods. SPQEO. 2016. 19, No 3. P. 295-298.

https://doi.org/10.15407/spqeo19.03.295

31. Klaassen F.M., Blok J. and De Hoog F.J. Generation-recombination noise in p-type InSb. Physica. 1961. 27, No2. P. 185-196.

https://doi.org/10.1016/0031-8914(61)90041-6

32. Pagel B.R. and Petritz R.L. Noise in InSb Photodiodes. J. Appl. Phys. 1961. 32, No 10. P. 1901-1904.

https://doi.org/10.1063/1.1728260

33. Epstein M. Current Noise in Evaporated Films of InSb and InAs. J. Appl. Phys. 1965. 36, No 8. P. 2590-2591.

https://doi.org/10.1063/1.1714539

34. Fleming W.J., and Rowe J.E. Emission of Microwave Noise Radiation from InSb. J. Appl. Phys. 1971. 42, No 1. P. 435-444.

https://doi.org/10.1063/1.1659618

35. Van Welzenis R.G. and Lodder J.J. Generation-recombination noise and the microwave emission from InSb. J. Appl. Phys. 1973. 44, No 6. P. 2696-2707.

https://doi.org/10.1063/1.1662637

36. Lukyanchikova N.B., Solganik B.D. and Kosogov O.V. Effect of illumination on noise and some other characteristics of p-n junctions in InSb. Solid-State Electron. 1973. 16, No 12. P. 1473-1480.

https://doi.org/10.1016/0038-1101(73)90064-6

37. Hall D.N.B., Alkens R.S., Joyce R., McCurnin T.W. Johnson noise limited operation of photovoltaic InSb detectors. Appl. Opt. 1975. 14, No 2. P. 450-453.

https://doi.org/10.1364/AO.14.000450

38. Vande Voorde P., Iddings C.K., Love W.F., and Halford D. Structure in the flicker-noise power spectrum of nInSb. Phys. Rev. B. 1979. 19, No 8. P. 4121-4124.

https://doi.org/10.1103/PhysRevB.19.4121

39. Vande Voorde P. and Love W.F. Magnetic effects on 1/f noise in n-InSb. Phys. Rev. B. 1981. 24, No 8. P. 4781-4786.

https://doi.org/10.1103/PhysRevB.24.4781

40. Kogan Sh. 1/f noise and random telegraph noise, in: Electronic Noise and Fluctuations in Solids, Cambridge University Press, 1996. P. 203-286.

https://doi.org/10.1017/CBO9780511551666.009

41. Brown E. Non-equilibrium noise of InSb hot electron bolometers. J. Appl. Phys. 1984. 55, No 1. P. 213-217.

https://doi.org/10.1063/1.332867

42. Astahov A.P., Dudkin V.F., Kerner B.S. et al., Mechanisms of burst noise p-n junctions. Microelectronics. 1989. 18, No 5. P. 455-463 (in Russian).

43. Alekperov S.A., Aliyev F.L. Temperature dependence of 1/f noise in p-InSb. Fiz. Tehn. Poluprovod. 1990. 24, No 5. P. 921-923 (in Russian).

44. Aleksandrov S.E., Gavrilov G.A., Sotnikov G.Yu. Influence of low-frequency noise on threshold sensitivity of MWIR photodiode photodetectors in wide frequency range. Techn. Phys. Let. 2014. 40, No 16. P. 58-64.

https://doi.org/10.1134/S1063785014080161

45. Suits G.H., Schmitz W.D., and Terhune R.W. Excess noise in InSb. J. Appl. Phys. 1956. 27. P. 1385.

https://doi.org/10.1063/1.1722273

46. Tetyorkin V.V., Sukach A.V., Tkachuk A.I., Trotsenko S.P. 1/f noise and carrier transport mechanisms in InSb p+-n junctions. SPQEO. 2018. 21, No 4. P. 374-379.

https://doi.org/10.15407/spqeo21.04.374

47. Bikovskii Yu.F., Vjukov L.A., Dudoladov A.G. et al., Investigation of MIS film structures based on CdTe-InSb. Pisma Zhurnal Tekhn. Fiziki. 1983. 9, No 17. P. 1071-1074 (in Russian).

48. Riben A.R. and Feucht D.L. Electrical transport in nGe-pGaAs heterojunctions. Int. J. Electron. 1966. 20, No 6. P. 583-599.

https://doi.org/10.1080/00207216608937891

49. Evstropov V.V., Zhilyaev Yu.V., Dzhumaeva M. and Nazarov N. Tunnel excess current in nondegenerated (p-n and m-s) silicon-containing III-V compound semiconductor structures. Fiz. Tekh. Poluprovodn. 1997. 31, No 2. P. 152-158.

https://doi.org/10.1134/1.1187092

50. Evstropov V.V., Dzhumaeva M., Zhilyaev Yu.V., Nazarov N., Sitnikova A.A. and Fedorov L.M. Dislocation origin and a model of the excessive tunnel current in GaP p-n structures. Ibid. 2000. 34, No 11. P. 1357-1362.

https://doi.org/10.1134/1.1325428

51. Sukach A., Tetyorkin V., Olijnuk G., Lukyanenko V., Voroschenko A. Cooled InAs photodiodes for IR applications. Proc. SPIE. 2005. 5957. P. 267-276.

https://doi.org/10.1117/12.622195

52. Madelung O. Semiconductors-Basic Data, 2nd revised Edition. Berlin, Springer, 1996.

https://doi.org/10.1007/978-3-642-97675-9

53. Ageev O.A., Belyaev A.E., Boltovets N.S., Ivanov V.N., Konakova R.V., Kudryk Ya.Ya., Lytvyn P.M., Milenin V.V., Sachenko A.V., Au-TiBx−n-6H-SiC Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Ibid. 2009. 43, No 7. P. 897-903.

https://doi.org/10.1134/S1063782609070070

54. Matare H.F. Defect Electronics in Semiconductors. Wiley, N.Y., 1971.

55. Holt D.B. and Yacobi B.G. Extended defects in Semiconductors. Electronic Properties, Device Effects and Structures. Cambridge University Press, N.Y., 2007.

https://doi.org/10.1017/CBO9780511534850

56. Shikin V.B., Shikina Yu.V. Charged dislocations in semiconductors. Physics-Uspekhi. 1995. 38, No 8. P. 845-875.

https://doi.org/10.1070/PU1995v038n08ABEH000099

57. Kveder V.V., Labusch R., and Ossipyan Yu.A. Frequency dependence of the dislocation conduction in Ge and Si. phys. status solidi. 1985. 92. P. 293-302.

https://doi.org/10.1002/pssa.2210920130

58. Nitccki R. and Pohoryles B. Tunneling from dislocation cores in silicon Schottky diodes. Appl. Phys. 1985. A36. P. 55-61.

https://doi.org/10.1007/BF00616462

59. Kveder V., Kittler M., Schröter W. Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys. Rev. 2001. B63. P. 115208-1-115208-11.

https://doi.org/10.1103/PhysRevB.63.115208

60. Seibt M., Halil R., Kveder V. and Schröter W. Electronc states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials. Appl. Phys. 2009. A96. P. 235-253.

https://doi.org/10.1007/s00339-008-5027-8

61. Labusch R. One dimensional transport along dislocations. Physica. 1982. 117B-118B. P. 23-28.

https://doi.org/10.1016/0378-4363(83)90483-7

62. Sukach A.V., Teterkin V.V. Transformaciya elektricheskih svojstv InAs p-n perehodov v rezultate ultrazvukovj obrabotki. Pisma v ZhTF. 2009. 35, №11. S. 67-75. (in Russian)

63. Granato A., Lyukke K. Strunnaya model dislokacii i dislokacionnoe pogloshenie zvuka. V kn.: Fizicheskaya akustika, pod red. U. Mezena. M.: Mir, 1969. t. 4, ch. A. S. 261-321. (in Russian)

64. Rosenfeld D. and Bahir G. A model for the trap-assisted tunneling mechanism in diffused n-p and implanted n+-p HgCdTe photodiodes. IEEE Trans. Electron Dev. 1992. 39, No 7. P. 1638-1645.

https://doi.org/10.1109/16.141229

65. Nemirovsky Y., Unikovsky A. Tunneling and 1/f noise currents in HgCdTe photodiodes. J. Vac. Sci. Technol. B. 1992. 10, No 4. P. 1602-1610.

https://doi.org/10.1116/1.586256

66. Nemirovsky Y., Fastow R., Meyassed M., and Unikovsky A. Trapping effects in HgCdTe. J. Vac. Sci. Technol. 1991. B9, No 3. P.1829-1839.

https://doi.org/10.1116/1.585808

67. Fridel Zh. Dislokacii. M.: Mir, 1967. (in Russian)

68. Skupov V.D., Tetelbaum D.I. O vliyanii uprugih napryazhenij na transformaciyu defektov v poluprovodnikah. FTP. 1987. 21, №8. S. 1495-1497. (in Russian)


А.В. Сукач, В.В. Тетьоркін, А.І. Ткачук1, С.П. Троценко

InAs ФОТОДІОДИ (ОГЛЯД. ЧАСТИНА IV)

Проаналізовано основні види шуму в інфрачервоних фотодіодах на основі InSb та InAs. Розглянуто сучасний стан експериментальних та теоретичних досліджень теплового, дробового, генераційнорекомбінаційного та радіаційного шуму у фотодіодах. Особлива увага приділена результатам досліджень низькочастотного шуму 1/f типу. Встановлено кореляцію між величиною 1/f шуму та генераційно-тунельним механізмом протікання темнового струму у фотодіодах. Експериментальні результати обговорюються в рамках моделі неоднорідного переходу. Показано, що основною причиною виникнення 1/f шуму в InSb та InAs фотодіодах можуть бути флуктуації опору, зумовлені наявністю двох каналів провідності в області просторового заряду. Виконано розрахунки низькочастотного шуму з використанням існуючих теоретичних моделей.

Ключові слова: InSb фотодіод, 1/f шум, тунельний струм, неоднорідний p-n перехід.