https://doi.org/10.15407/iopt.2022.57.082

Optoelectron. Semicond. Tech. 57, 82-92 (2022)

S.O. Kostyukevych, K.V. Kostyukevych, R.V. Khrystosenko,  A.A. Koptyukh, V.I. Pogoda


SENSING ELEMENT OF THE SURFACE PLASMON SENSOR WITH THERMAL MODIFICATION OF THE STRUCTURAL PROPERTIES OF THE POLYMER SUBSTRATE


The development of an effective sensing element (ChE) sensor with a prism type of excitation (Kretchman configuration) of surface plasmon resonance (SPR) in a gold film and a mechanical survey of the angle of incidence of monochromatic light based on a polymer substrate is based on a combination of radiation binding schemes using a prism and a lattice to prevent losses in the active metal film.

Replacing the glass substrate with a polymer one has reduced the cost of ChE, led to increased sensitivity and simplification of its manufacturing technology, which does not require the use of intermediate adhesion layers. Additionally, we applied a thermal method of modifying the optical and structural properties of the substrate – hot pressing of the matrix, which contained a periodically nanostructured surface relief in the form of a diffraction two-dimensional (2D) lattice. The original 2D lattice was recorded on photoresist-covered (Shepley 1805) glass plates using the method of two-beam interference (He-Cd laser,  = 440 nm) at double exposure (time 2040 s, power 20 mW/cm2) of the sample with a rotation of 90.

Characteristics of ChE on an optical polycarbonate substrate (d = 2.25 mm, n = 1.58 at ( = 650 nm) after hot pressing, which contained a flat and periodically nanostructured surface in the form of a diffraction 2D lattice, followed by the deposition of a thin (d  40 nm) layer of gold on them was examined using an atomic force microscope (AFM) and the device "Plasmon". AFM studies have shown that the technological technique used made it possible to obtain lateral-ordered structures in the form of pyramids with calculated parameters – a period of 422435 nm (spatial frequency of about 2350 lin/mm) and a relief depth of 7090 nm. However, the preservation of a wave-like relief (about 300 nm) on a flat part of the surface and double ray refraction of the polymer substrate, encourage optimization of the hot pressing process using the resulting matrix on polymer substrates of smaller thickness.

Keywords: surface plasmon resonance, sensor, sensitive element, polymer substrate, holographic lithography, hot pressing.

References

1. Handbook of Surface Plasmon Resonance / Edited by R.B.M. Schasfoort and Anna J. Tudos. Cambridge (UK): Royal Society of Chemistry, 2008. 426 p.

2. Kretschmann E., Raether H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforschung A. 1968. 123. P. 2135-2136.

https://doi.org/10.1515/zna-1968-1247

3. Kretschmann E., Determination of optical constants of metals through the stimulation of surface plasmon oscillations. Z. Phys. 1971. 241. P. 313-324.

https://doi.org/10.1007/BF01395428

4. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968. 216. P. 398-410.

https://doi.org/10.1007/BF01391532

5. Teng Y.Y., Stern E.A. Plasma radiation from metal grating surfaces. Phys. Rev. Lett. 1967. 19. P. 511-514.

https://doi.org/10.1103/PhysRevLett.19.511

6. Vörös J. The density and refractive index of adsorbing protein layers. Biophysical Journal. 2004. 87. Р. 553-561.

https://doi.org/10.1529/biophysj.103.030072

7. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008. 108. Р. 462-493.

https://doi.org/10.1021/cr068107d

8. Tabasi O., Falamaki C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods. 2018. 32. P. 3899 - 4008.

https://doi.org/10.1039/C8AY00948A

9. Hoa X.D., Kirk A.G., Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors and Bioelectronics. 2007. 23. P. 151-160.

https://doi.org/10.1016/j.bios.2007.07.001

10. Singh P. Biosensors: historical perspectives and current challenges. Sensors and Actuators B. 2016. 229. Р. 110-130.

https://doi.org/10.1016/j.snb.2016.01.118

11. Xu Y., Bai P., Zhou X., Akimov Yu., Png C.E., Ang L.-K., Knoll W., Wu L. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth (review). Adv. Optical Mater. 2019. 1801433 (47p.).

https://doi.org/10.1002/adom.201801433

12. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P. 3-15.

https://doi.org/10.1016/S0925-4005(98)00321-9

13. Yeatman E.M. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors Bioelectron. 1996. 11. P. 635-649.

https://doi.org/10.1016/0956-5663(96)83298-2

14. Kolomenskii A.A., Gershon P.D., Schuessler H.A. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl. Opt. 1997. 36. P. 6539-6547.

https://doi.org/10.1364/AO.36.006539

15. Komisarenko S.V. Svitova koronavirusna kryza. Kyiv: LAT&K, 2020. 120 s.

16. Shyrshov Yu.M., Venher Ye.F., Prokhorovych A.V., Ushenin Yu.V., Matsas Ye.P., Chehel V.I., Samoilov A.V. Sposib detektuvannia ta vyznachennia kontsentratsii biomolekul ta molekuliarnykh kompleksiv ta prystrii dlia yoho zdiisnennia: pat. UA 46018 C2. MPK(2006): G01N 21/55. №97105153, Zaiavl. 22.10.1997; Opubl. 15.05.2002, Biul. № 5.

17. Shirshov Y.M., Chegel V.I., Subota Y.V., Matsas E.P., Kostioukevich E.V., Rachcov A.E., Merker R. Biosensors based on SPR and optimization of their working parameters. Proc. of SPIE. 1995. 2780. P. 257-260.

https://doi.org/10.1117/12.238166

18. Beketov H.V., Klymov O.S., Matiash I.Ie., Oberemok Ye.A., Rudenko S.P., Savenkov S.M., Samoilov A.V., Serdeha B.K., Ushenin Yu.V, Shyrshov Yu.M. Fizychni osnovy poliarymetrii vysokoi informatyvnoi zdatnosti / Pid redaktsiieiu B.K. Serdehy. Kyiv: NTUU "KPI" VP VPK "Politekhnika", 2013. 249 s. ISBN 978-966-622-608-5.

19. Kostioukevich S.A., Shirshov Y. M., Matsas E. P., Chegel V. I., Stronski A. V., Subbota Y. V., Shepelyavi P. E. Application of surface plasmon resonance for the investigation of ultrathin metal films. Proc. of SPIE. 1995. 2648. Р. 144-151.

https://doi.org/10.1117/12.226156

20. Kostiukevych S.O., Khrystosenko R. V., Kostiukevych K.V., Koptiukh A.A., Surovtseva O.R., Kriuchyn A.A. Molekuliarnyi analiz tonkykh plivok riznoi pryrody na osnovi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2018. 20. №4. S. 5-20.

https://doi.org/10.35681/1560-9189.2018.20.4.178531

21. Kostiukevych K.V., Shyrshov Yu.M., Khrystosenko R.V., Samoilov A.V.,Ushenyn Yu.V., Kostiukevych S.A., Koptiukh A.A. Osobennosty uhlovoho spektra poverkhnostnoho plazmon-poliarytonnoho rezonansa v heometryy Kretchmana pry issledovanii lateksnoi vodnoi suspenzii. Optoelektronika i poluprovodnikovaia tekhnika. 2018. 53. S. 220-239.

22. Shyrshov Yu.M., Kostiukevych K.V., Khrystosenko R.V., Hridina N.Ia., Kostiukevych S.A., Ushenin Yu.V., Samoilov A.V. Optychnyi kontrol mezhi rozpodilu mizh poverkhneiu zolota ta zrazkamy klityn krovi. Optoelektronika ta napivprovidnykova tekhnika, 2021. 56. S. 134-155.

https://doi.org/10.15407/iopt.2021.56.134

23. Kostyukevych K.V., Khristosenko R.V., Shirshov Yu.M., Kostyukevych S.A., Samoylov A.V., Kalchenko V.I. Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2011. 14. №3. P. 313-320.

https://doi.org/10.15407/spqeo14.03.313

24. Kostyukevych K. V., Khristosenko R. V., Pavluchenko A. S., Vakhula A. A., Kazantseva Z. I., Koshets I. A., Shirshov Yu. M. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B. 2016. 223. P. 470-480.

https://doi.org/10.1016/j.snb.2015.09.123

25. Kostyukevych K.V., Snopok B.A., Shirshov Yu.M., Kolesnikova I.N., Zinio S.A., Lugovskoi E.N. New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Proc. of SPIE. 1998. 3414. P. 290-301.

https://doi.org/10.1117/12.323542

26. Khrystosenko R. V. Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19. №1. P. 84-89.

https://doi.org/10.15407/spqeo19.01.084

27. Samoilov A.V. Tendentsii rozvytku sensornykh pryladiv na osnovi poverkhnevoho plazmonnoho rezonansu. Optoelektronika ta napivprovidnykova tekhnika. 2021. 54. S.5-26.

28. Kostiukevych K.V., Khrystosenko R.V., Zahorodnia S.D., Kostiukevych S.O., Koptiukh A.A. , Kriuchyn A.A., Oleksenko P.F. Molekuliarna diahnostyka na osnovi kutovoi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2020. 22. №3. S.14-30.

https://doi.org/10.35681/1560-9189.2020.22.3.218824

29. Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 2017. 56 (12). Р. 121907 (1-8).

https://doi.org/10.1117/1.OE.56.12.121907

30. Verkerk M.J., Raaijmakers I.J.M.M. Topographic characterization of vacuum-deposited films by optical methods. Thin Solid Films. 1985. 124. P. 271-275.

https://doi.org/10.1016/0040-6090(85)90276-7

31. Parmigiani F., Scagliotti M., Samoggia G., Ferraris G. P. Influence of the growth conditions on the optical properties of thin gold films. Thin Solid Films. 1985. 125. P. 229-234.

https://doi.org/10.1016/0040-6090(85)90226-3

32. Braundmeier A. J., Arakawa E. T. Effect of surface roughness on surface plasmon resonance adsorption. Journal Physics Chemistry Solids. 1974. 35. Р. 517-520.

https://doi.org/10.1016/S0022-3697(74)80005-3

33. Benjamin B.P., Weaver C. The adhesion of evaporated metal films on glass. Proc. Roy. Soc. A. 1961. 261. No.7. Р. 516-531.

https://doi.org/10.1098/rspa.1961.0093

34. Kostiukevych S.O., Koptiukh A.A, Kostiukevych K.V., Khrystosenko R.V., Pohoda V.I. Sposib vyhotovlennia robochoho elementa peretvoriuvacha z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu na polimernii pidkladtsi: pat. na kor. model UA 129757 U. MPK (2006): G01N 21/55; B82Y 20/00. №u201805163, Zaiavl. 10.05.2018; Opubl. 12.11.2018, Biul. № 21.

35. Kostiukevych S.O., Koptiukh A.A., Kostiukevych K.V., Lysiuk V.O., Pohoda V.I., Khrystosenko R.V., Samoilov A.V., Ushenin Yu.V., Surovtseva O.R., Kriuchyn A.A. Udoskonalennia sensoriv z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu na polimernii osnovi. Reiestratsiia, zberihannia i obrobka danykh. 2019. 21. № 3. S. 3-19.

https://doi.org/10.35681/1560-9189.2019.21.3.183437

36. Liedberg B., Lundstrom I., Stenberg E.  Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B. 1993. 11. P. 63-72.

https://doi.org/10.1016/0925-4005(93)85239-7

37. Lofas S., Johnsson B., Tegendal K., Ronnberg I. Dextran modified gold surfaces for surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody-surface interaction studies. Colloids and Surfaces B: Biointerfaces. 1993. 1. P. 83-89.

https://doi.org/10.1016/0927-7765(93)80038-Z

38. Stewart M.E., Anderton C.R., Thompson L.B., Maria J., Gray S.K., Rogers J.A., Nuzzo R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008. 108. No.2. Р. 494-521.

https://doi.org/10.1021/cr068126n

39. Hlubina P., Urbancova P., Pudis D., Goraus M., Jandura D., Ciprian D. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating. Optics Letters. 2019. 44. No.22. P. 5602-5605.

https://doi.org/10.1364/OL.44.005602

40. Kostiukevych K.V., Kriuchyna Ye.A., Kriuchyn A.A., Kostiukevych S.O. Optychni biosensory na osnovi hibrydnykh nanostruktur ta meta materialiv. Medychna informatyka ta inzheneriia. 2021. №2. S.14-33.

41. Alleyne C.J., Kirk A.G., McPhedran R.C., Nicorovici N.-A.P., Maystre D. Enhanced SPR sensitivity using periodic metallic structures. Opt.Express. 2007. 15. No.13. Р. 8163-8169.

https://doi.org/10.1364/OE.15.008163

42. Indutnyi I., Ushenin Yu., Hegemann D., Vandenbossche M., Myn'ko V., Shepeliavyi P., Lukaniuk M., Korchovyi A., Khrystosenko R. Enhancing surface plasmon resonance detection using nanostructured Au chips. Nanoscale Res. Lett. 2016. 11. P. 535 (6р).

https://doi.org/10.1186/s11671-016-1760-7

43. Indutnyi I.Z., Ushenin Yu.V., Mynko V.I., Shepeliavyi P.Ie., Lukaniuk M.V., Dorozhynskyi H.V. Prylad dlia analizu ridkykh ta hazopodibnykh seredovyshch. Patent Ukrainy na korysnu model № 128187; opubl. 10.09.2018, biul. № 17.

44. Brueck S.R.J. Optical and interferometric lithography - nanotechnology enablers. Proc. IEEE. 2005. 93(10). P. 1704-1721.

https://doi.org/10.1109/JPROC.2005.853538

45. Kostiukevych S.O., Khrystosenko R.V., Kostiukevych K.V., Koptiukh A.A., Pohoda V.I. Efektyvnyi robochyi element sensora z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu. Zaiavka na patent Ukrainy №a202102589 vid 17.05.2021, MPK (2006.01): G01N 21/55.

46. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P. 3-15.

https://doi.org/10.1016/S0925-4005(98)00321-9

47. de Bruijn H.E., Kooyman R.P.H., Greve J. Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Applied Optics. 1992. 31. No.4. P. 440-442.

https://doi.org/10.1364/AO.31.0440_1

48. Fontana E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Applied Optics. 2006. 45. No.29. P. 7632-7642.

https://doi.org/10.1364/AO.45.007632

49. Kostiukevych K.V. Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19. № 3. Р. 255-266.

https://doi.org/10.15407/spqeo19.03.255

С. О. Костюкевич, К. В. Костюкевич, Р. В. Христосенко, А. А. Коптюх, В. І. Погода

ЧУТЛИВИЙ ЕЛЕМЕНТ СЕНСОРА ПОВЕРХНЕВИХ ПЛАЗМОНІВ З ТЕРМІЧНОЮ МОДИФІКАЦІЄЮ СТРУКТУРНИХ ВЛАСТИВОСТЕЙ ПОЛІМЕРНОЇ ПІДКЛАДКИ

Роботу присвячено виготовленню та дослідженню змінного чутливого елементу (ЧЕ) сенсора з призмовим типом збудження (конфігурація Кретчмана) поверхневого плазмонного резонансу (ППР) у плівці золота та механічним опитуванням кута падіння монохроматичного світла при застосуванні полімерної підкладки, що містить періодично наноструктурований рельєф поверхні. Запропоновано термічний спосіб модифікації структурних властивостей полімерної підкладки – гаряче пресування дифракційної двовимірної ґратки, яку виготовляли  за методикою двопроменевої інтерференції застосовуючи двократне експонування зразка з кутом повороту 90. Проведено аналіз характеристик ЧЕ сенсору ППР на плоских та структурованих поверхнях полімерної підкладки після гарячого пресування. 

Ключові слова: поверхневий плазмонний резонанс, сенсор, чутливий елемент, полімерна підкладка, голографічна літографія, гаряче пресування.