1. Handbook of Surface Plasmon Resonance / Edited by R.B.M. Schasfoort and Anna J. Tudos. Cambridge (UK): Royal Society of Chemistry, 2008. 426 p.
2. Kretschmann E., Raether H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforschung A. 1968. 123. P. 2135-2136.
https://doi.org/10.1515/zna-1968-1247
3. Kretschmann E., Determination of optical constants of metals through the stimulation of surface plasmon oscillations. Z. Phys. 1971. 241. P. 313-324.
https://doi.org/10.1007/BF01395428
4. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968. 216. P. 398-410.
https://doi.org/10.1007/BF01391532
5. Teng Y.Y., Stern E.A. Plasma radiation from metal grating surfaces. Phys. Rev. Lett. 1967. 19. P. 511-514.
https://doi.org/10.1103/PhysRevLett.19.511
6. Vörös J. The density and refractive index of adsorbing protein layers. Biophysical Journal. 2004. 87. Р. 553-561.
https://doi.org/10.1529/biophysj.103.030072
7. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008. 108. Р. 462-493.
https://doi.org/10.1021/cr068107d
8. Tabasi O., Falamaki C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods. 2018. 32. P. 3899 - 4008.
https://doi.org/10.1039/C8AY00948A
9. Hoa X.D., Kirk A.G., Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors and Bioelectronics. 2007. 23. P. 151-160.
https://doi.org/10.1016/j.bios.2007.07.001
10. Singh P. Biosensors: historical perspectives and current challenges. Sensors and Actuators B. 2016. 229. Р. 110-130.
https://doi.org/10.1016/j.snb.2016.01.118
11. Xu Y., Bai P., Zhou X., Akimov Yu., Png C.E., Ang L.-K., Knoll W., Wu L. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth (review). Adv. Optical Mater. 2019. 1801433 (47p.).
https://doi.org/10.1002/adom.201801433
12. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P. 3-15.
https://doi.org/10.1016/S0925-4005(98)00321-9
13. Yeatman E.M. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors Bioelectron. 1996. 11. P. 635-649.
https://doi.org/10.1016/0956-5663(96)83298-2
14. Kolomenskii A.A., Gershon P.D., Schuessler H.A. Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl. Opt. 1997. 36. P. 6539-6547.
https://doi.org/10.1364/AO.36.006539
15. Komisarenko S.V. Svitova koronavirusna kryza. Kyiv: LAT&K, 2020. 120 s.
16. Shyrshov Yu.M., Venher Ye.F., Prokhorovych A.V., Ushenin Yu.V., Matsas Ye.P., Chehel V.I., Samoilov A.V. Sposib detektuvannia ta vyznachennia kontsentratsii biomolekul ta molekuliarnykh kompleksiv ta prystrii dlia yoho zdiisnennia: pat. UA 46018 C2. MPK(2006): G01N 21/55. №97105153, Zaiavl. 22.10.1997; Opubl. 15.05.2002, Biul. № 5.
17. Shirshov Y.M., Chegel V.I., Subota Y.V., Matsas E.P., Kostioukevich E.V., Rachcov A.E., Merker R. Biosensors based on SPR and optimization of their working parameters. Proc. of SPIE. 1995. 2780. P. 257-260.
https://doi.org/10.1117/12.238166
18. Beketov H.V., Klymov O.S., Matiash I.Ie., Oberemok Ye.A., Rudenko S.P., Savenkov S.M., Samoilov A.V., Serdeha B.K., Ushenin Yu.V, Shyrshov Yu.M. Fizychni osnovy poliarymetrii vysokoi informatyvnoi zdatnosti / Pid redaktsiieiu B.K. Serdehy. Kyiv: NTUU "KPI" VP VPK "Politekhnika", 2013. 249 s. ISBN 978-966-622-608-5.
19. Kostioukevich S.A., Shirshov Y. M., Matsas E. P., Chegel V. I., Stronski A. V., Subbota Y. V., Shepelyavi P. E. Application of surface plasmon resonance for the investigation of ultrathin metal films. Proc. of SPIE. 1995. 2648. Р. 144-151.
https://doi.org/10.1117/12.226156
20. Kostiukevych S.O., Khrystosenko R. V., Kostiukevych K.V., Koptiukh A.A., Surovtseva O.R., Kriuchyn A.A. Molekuliarnyi analiz tonkykh plivok riznoi pryrody na osnovi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2018. 20. №4. S. 5-20.
https://doi.org/10.35681/1560-9189.2018.20.4.178531
21. Kostiukevych K.V., Shyrshov Yu.M., Khrystosenko R.V., Samoilov A.V.,Ushenyn Yu.V., Kostiukevych S.A., Koptiukh A.A. Osobennosty uhlovoho spektra poverkhnostnoho plazmon-poliarytonnoho rezonansa v heometryy Kretchmana pry issledovanii lateksnoi vodnoi suspenzii. Optoelektronika i poluprovodnikovaia tekhnika. 2018. 53. S. 220-239.
22. Shyrshov Yu.M., Kostiukevych K.V., Khrystosenko R.V., Hridina N.Ia., Kostiukevych S.A., Ushenin Yu.V., Samoilov A.V. Optychnyi kontrol mezhi rozpodilu mizh poverkhneiu zolota ta zrazkamy klityn krovi. Optoelektronika ta napivprovidnykova tekhnika, 2021. 56. S. 134-155.
https://doi.org/10.15407/iopt.2021.56.134
23. Kostyukevych K.V., Khristosenko R.V., Shirshov Yu.M., Kostyukevych S.A., Samoylov A.V., Kalchenko V.I. Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2011. 14. №3. P. 313-320.
https://doi.org/10.15407/spqeo14.03.313
24. Kostyukevych K. V., Khristosenko R. V., Pavluchenko A. S., Vakhula A. A., Kazantseva Z. I., Koshets I. A., Shirshov Yu. M. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B. 2016. 223. P. 470-480.
https://doi.org/10.1016/j.snb.2015.09.123
25. Kostyukevych K.V., Snopok B.A., Shirshov Yu.M., Kolesnikova I.N., Zinio S.A., Lugovskoi E.N. New opto-electronic system based on the surface plasmon resonance phenomenon: application to the concentration determination of DD-fragment of fibrinogen. Proc. of SPIE. 1998. 3414. P. 290-301.
https://doi.org/10.1117/12.323542
26. Khrystosenko R. V. Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19. №1. P. 84-89.
https://doi.org/10.15407/spqeo19.01.084
27. Samoilov A.V. Tendentsii rozvytku sensornykh pryladiv na osnovi poverkhnevoho plazmonnoho rezonansu. Optoelektronika ta napivprovidnykova tekhnika. 2021. 54. S.5-26.
28. Kostiukevych K.V., Khrystosenko R.V., Zahorodnia S.D., Kostiukevych S.O., Koptiukh A.A. , Kriuchyn A.A., Oleksenko P.F. Molekuliarna diahnostyka na osnovi kutovoi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2020. 22. №3. S.14-30.
https://doi.org/10.35681/1560-9189.2020.22.3.218824
29. Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 2017. 56 (12). Р. 121907 (1-8).
https://doi.org/10.1117/1.OE.56.12.121907
30. Verkerk M.J., Raaijmakers I.J.M.M. Topographic characterization of vacuum-deposited films by optical methods. Thin Solid Films. 1985. 124. P. 271-275.
https://doi.org/10.1016/0040-6090(85)90276-7
31. Parmigiani F., Scagliotti M., Samoggia G., Ferraris G. P. Influence of the growth conditions on the optical properties of thin gold films. Thin Solid Films. 1985. 125. P. 229-234.
https://doi.org/10.1016/0040-6090(85)90226-3
32. Braundmeier A. J., Arakawa E. T. Effect of surface roughness on surface plasmon resonance adsorption. Journal Physics Chemistry Solids. 1974. 35. Р. 517-520.
https://doi.org/10.1016/S0022-3697(74)80005-3
33. Benjamin B.P., Weaver C. The adhesion of evaporated metal films on glass. Proc. Roy. Soc. A. 1961. 261. No.7. Р. 516-531.
https://doi.org/10.1098/rspa.1961.0093
34. Kostiukevych S.O., Koptiukh A.A, Kostiukevych K.V., Khrystosenko R.V., Pohoda V.I. Sposib vyhotovlennia robochoho elementa peretvoriuvacha z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu na polimernii pidkladtsi: pat. na kor. model UA 129757 U. MPK (2006): G01N 21/55; B82Y 20/00. №u201805163, Zaiavl. 10.05.2018; Opubl. 12.11.2018, Biul. № 21.
35. Kostiukevych S.O., Koptiukh A.A., Kostiukevych K.V., Lysiuk V.O., Pohoda V.I., Khrystosenko R.V., Samoilov A.V., Ushenin Yu.V., Surovtseva O.R., Kriuchyn A.A. Udoskonalennia sensoriv z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu na polimernii osnovi. Reiestratsiia, zberihannia i obrobka danykh. 2019. 21. № 3. S. 3-19.
https://doi.org/10.35681/1560-9189.2019.21.3.183437
36. Liedberg B., Lundstrom I., Stenberg E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B. 1993. 11. P. 63-72.
https://doi.org/10.1016/0925-4005(93)85239-7
37. Lofas S., Johnsson B., Tegendal K., Ronnberg I. Dextran modified gold surfaces for surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody-surface interaction studies. Colloids and Surfaces B: Biointerfaces. 1993. 1. P. 83-89.
https://doi.org/10.1016/0927-7765(93)80038-Z
38. Stewart M.E., Anderton C.R., Thompson L.B., Maria J., Gray S.K., Rogers J.A., Nuzzo R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008. 108. No.2. Р. 494-521.
https://doi.org/10.1021/cr068126n
39. Hlubina P., Urbancova P., Pudis D., Goraus M., Jandura D., Ciprian D. Ultrahigh-sensitive plasmonic sensing of gas using a two-dimensional dielectric grating. Optics Letters. 2019. 44. No.22. P. 5602-5605.
https://doi.org/10.1364/OL.44.005602
40. Kostiukevych K.V., Kriuchyna Ye.A., Kriuchyn A.A., Kostiukevych S.O. Optychni biosensory na osnovi hibrydnykh nanostruktur ta meta materialiv. Medychna informatyka ta inzheneriia. 2021. №2. S.14-33.
41. Alleyne C.J., Kirk A.G., McPhedran R.C., Nicorovici N.-A.P., Maystre D. Enhanced SPR sensitivity using periodic metallic structures. Opt.Express. 2007. 15. No.13. Р. 8163-8169.
https://doi.org/10.1364/OE.15.008163
42. Indutnyi I., Ushenin Yu., Hegemann D., Vandenbossche M., Myn'ko V., Shepeliavyi P., Lukaniuk M., Korchovyi A., Khrystosenko R. Enhancing surface plasmon resonance detection using nanostructured Au chips. Nanoscale Res. Lett. 2016. 11. P. 535 (6р).
https://doi.org/10.1186/s11671-016-1760-7
43. Indutnyi I.Z., Ushenin Yu.V., Mynko V.I., Shepeliavyi P.Ie., Lukaniuk M.V., Dorozhynskyi H.V. Prylad dlia analizu ridkykh ta hazopodibnykh seredovyshch. Patent Ukrainy na korysnu model № 128187; opubl. 10.09.2018, biul. № 17.
44. Brueck S.R.J. Optical and interferometric lithography - nanotechnology enablers. Proc. IEEE. 2005. 93(10). P. 1704-1721.
https://doi.org/10.1109/JPROC.2005.853538
45. Kostiukevych S.O., Khrystosenko R.V., Kostiukevych K.V., Koptiukh A.A., Pohoda V.I. Efektyvnyi robochyi element sensora z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu. Zaiavka na patent Ukrainy №a202102589 vid 17.05.2021, MPK (2006.01): G01N 21/55.
46. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P. 3-15.
https://doi.org/10.1016/S0925-4005(98)00321-9
47. de Bruijn H.E., Kooyman R.P.H., Greve J. Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Applied Optics. 1992. 31. No.4. P. 440-442.
https://doi.org/10.1364/AO.31.0440_1
48. Fontana E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Applied Optics. 2006. 45. No.29. P. 7632-7642.
https://doi.org/10.1364/AO.45.007632
49. Kostiukevych K.V. Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19. № 3. Р. 255-266.
https://doi.org/10.15407/spqeo19.03.255