https://doi.org/10.15407/iopt.2022.57.133

Optoelectron. Semicond. Tech. 57, 133-144 (2022)

A. A. Kryuchуn, V. V. Petrov, V. M. Rubish, M. L. Trunov, S. O. Kostyukevych, K. V. Kostyukevych


TECHNNOLOGIES  FOR   CREATING  SURFACE  RELIEFS  ON  FILMS  OF  CHALCOGENIDE  SEMICONDUCTORS


A review of recent progress in optical recording of surface relief structures in the films of amorphous chalcogenides is presented. Various aspects related to light-driven macroscopic effects for these materials (changes in solubility, local evaporation, volume changes, mass-transport and so on) where stimulated surface patterning takes place due to the interaction of matter with light are discussed. Experimental data describing different aspects of surface relief patterning using direct recording by tigtly focused single or structured light beams are summarized.

Keywords: 

References

1. F. Capasso. The future and promise of flat optics: a personal perspective. Nanophotonics. 2018. 7, №6. P.953-957. 

https://doi.org/10.1515/nanoph-2018-0004

2. She Alan, Zhang Shuyan, Shian Samuel, R.David. Clarke and Federico Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express. 2018. 26. P.1573-1585.

https://doi.org/10.1364/OE.26.001573

3. Michael T. Gale,Markus Rossi, Joern Pedersen and Helmut Schuetz. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists.  Optical Engineering.1994. 33, №11. https://doi.org/10.1117/12.17982.

https://doi.org/10.1117/12.17982

4. M. Rossi, R. E. Kunz, & Herzig, H. P. Refractive and diffractive properties of planar micro-optical elements. Applied Optics.1995. 34, №26. 5996.  doi:10.1364/ao.34.005996. 

https://doi.org/10.1364/AO.34.005996

5. N. Mohammad, M. Meem, B. Shen, et al. Broadband imaging with one planar diffractive lens. Sci Rep.2018. 8. 2799. https://doi.org/10.1038/s41598-018-21169-4.

https://doi.org/10.1038/s41598-018-21169-4

6. A. Braun and S. A. Maier. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors. ACS Sens.2016. 1, №9. P. 1155-1162.

https://doi.org/10.1021/acssensors.6b00469

7. S. Schroeter, M. Vlček, R. Poehlmann, and A. Fišerová. Efficient diffractive optical elements in chalcogenide glass layers fabricated by direct DUV laser writing. J. Phys. Chem. Solids.2007. 68, №5-6. P. 916-919.

https://doi.org/10.1016/j.jpcs.2007.01.014

8. V. V. Petrov, A. A. Kryuchyn, S. O. Kostyukevych, V. M. Rubish. Direct laser writing of microrelief structures on chalcogenide glass by laser beam recorder of master discs.Data Recording, Storage & Processing. 2020. 22, №1. P. 3-11.

9. A.A. Kryuchyn, V.V. Petrov, V.M. Rubish, S.A. Kostyukevych. The direct laser writing micro relief structures on chalcogenide glass by laser beam recorder of master discs. AbstractBook, 9thInternational Conference оn Amоrphous and Nanostructured Chalcogenides Сhisinau, Republic of Moldova, June 30 - Jule 4, 2019. P. 8-9.

10. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses. Optica. 2019. 6, №6. P.805-810; https://doi.org/10.1364/OPTICA.6.000805.

https://doi.org/10.1364/OPTICA.6.000805

11. Sivan Tzadka Shalit, Natali Ostrovsky, Hadar Frankenstein Shefa, Evyatar Kassis, Shay Joseph, Mark Schvartzman. Direct nanoimprint of chalcogenide glasses with optical functionalities via solvent-based surface softening. Optics Express. 2020. 30, №15. P .26229.

https://doi.org/10.1364/OE.462448

12. Dor Yehuda, Eviatar Kassis, Shay Joseph, and Mark Schvartzman.Direct soft imprint of chalcogenide glasses.Vacuum Sci. & Technology. 2018. 36. 031602; https://doi.org/10.1116/1.5023173.

https://doi.org/10.1116/1.5023173

13. Y. Isbi, S. Sternklar, E. Granot, V. Lyubin, M. Klebanov, A. Lewis. Sub-wavelength optical recording on chalcogenide glassy film. Optics Communications.1999. 171, №4/6. P.219-223; https://doi.org/10.1016/S0030-4018(99)00541-64.

https://doi.org/10.1016/S0030-4018(99)00541-6

14. Y. Zha, M. Waldmann, & C. B. Arnold. A review on solution processing of chalcogenide glasses for optical components. Optical Materials Express.2013. 3, №9.1259. doi:10.1364/ome.3.001259 

https://doi.org/10.1364/OME.3.001259

15. S. Kostyukevych, P. Shepeliavyi, S. Svechnikov. N.L. Moskalenko, V.M. Tomchuk, A.A. Koptyuh, A.V. Volkov, N.L. Kazansky, G.F. Kostyuk. Formation of diffractive optical elements using inorganic laser lithography. Data Recording, Storage and Processing. 2002. 4, №3. P. 3-12.

16. E. Achimova. Direct surface relief formation in nanomultilayers based on chalcogenide glasses: A review. Surface Engineering and Applied Electrochemistry. 2016 52, №5. P. 456-468. 10.3103/S1068375516050021.

https://doi.org/10.3103/S1068375516050021

17. S. Wong, M. Deubel, F. Perez-Willard, S. John, G.A. Ozin, M. Wegener, G. von Freymann Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses. Adv.Mater.2006. 18. 265. doi: 10.1002/adma.200501973

https://doi.org/10.1002/adma.200501973

18. V. Petrov, A. Kryuchin, S. Kostyukevych, V. Rubish. Inorganic Photolithography. Institute for Physics of Metals, NAS of Ukraine, Kyiv. 2007. 195 p.

19. S. Kostyukevych, P. Shepeliavyi, R. Moskalenko, V. Wenger, V. Petrov, A. Kryuchyn, S. Shanoilo. The study of the mastering of compact discs on inorganic photoresists. Data Recording, Storage and Processing. 2001. 3, №4. P. 5-14.

20. A. Kryuchyn, V. Petrov, V. Rubish, M. Trunov, P. Lytvyn, S. Kostyukevych. Formation of Nanoscale Structures on Chalcogenide Films. Physica status solidi (b). 2017. 255. 201700405.DOI: 10.1002/pssb.201700405.

https://doi.org/10.1002/pssb.201700405

21. I. Indutny, A. Kryuchyn, Yu. Borodin, V.A. Danko, M.V. Lukaniuk, V.I. Minko, P.E. Shepelyavy, E.V. Gera, V.M. Rubish. Optical Recording of Micro- and Nano- Relief Structures on Inorganic Resists Ge-Se. Data Recording, Storage and Processing. 2013. 15, №4. P. 3-14.

https://doi.org/10.35681/1560-9189.2013.15.4.103416

22. A. Kryuchyn, V. Petrov, V. Rubish, A. Lapchuk, S. Kostyukevych, P. Shepeliavyi, K. Kostyukevych. High-speed optical recording in vitreous chalcogenide thin films. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 17, №4. P. 389-393.

https://doi.org/10.15407/spqeo17.04.389

23. A. Kovalskiy. Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. Journal of Micro/Nanolithography, MEMS, and MOEMS. 2009. 8, №4. 043012. doi:10.1117/1.3273966. 

https://doi.org/10.1117/1.3273966

24. A. Stronski. Chalcogenide glasses: advances in research and applications; https://elib.bsu.by/bitstream/123456789/225731/1/48-49.

25. V. Takats, M. Trunov, K. Vad, J. Hakl, D. Beke, Y. Kaganovskii, S. Kökényesi. Lov-temperature photo-induced mass transfer in thin As20Se80 amorphous films. Materials Letters. 2015. 160. P.558-561.

https://doi.org/10.1016/j.matlet.2015.08.040

26. M.L. Trunov, P.M. Lytvyn. Selective light-induced mass transport in amorphous AsxSe100-X films driven by the composition tuning: Effect of temperature on maximum acceleration. J.Non-Cryst.Solids. 2018. 493. P.86-93.

https://doi.org/10.1016/j.jnoncrysol.2018.04.038

27. Yu Kaganovskii, M.L Trunov, D.L Beke, S Kökényesi. Mechanism of photo induced mass transfer in amorphous chalcogenide films. Materials Letters. 2012. 66. P.159-161.

https://doi.org/10.1016/j.matlet.2011.08.045

28. M.L. Trunov, P.M. Lytvyn, P.M. Nagy, A.Csik, V.M. Rubish, S. Kökényesi. Light-induced mass transport in amorphous chalcogenides:Toward surface plasmon-assisted nanolithography and near-field nanoimaging. Phys. Stat. Solidi(b).2014. 251, №7. P.1354-1362; https://doi.org/10.1002/pssb.201350296.

https://doi.org/10.1002/pssb.201350296

29. I. Charnovych, A. Szabo, Attila Lajos Toth, Janos Volk, M.L. Trunov, S. Kökényesi. Plasmon assisted photoinduced surface changes in amorphous chalcogenide layer. J.Non-Cryst.Solids. 2013. 377. P.200-204.

https://doi.org/10.1016/j.jnoncrysol.2012.11.038

30. V.V. Petrov, A.A. Kriuchyn, Yu.A. Kunytskyi, V.M. Rubish, A.S. Lapchuk, S.O. Kostiukevych. Metody nanolitohrafii. Kyiv: Naukova dumka. 2015. 262 s.

31. I. Csarnovich, M. Veres, P. Nemec, S. Molnár, & S. Kökényesi. Surface plasmon enhanced light-induced changes in Ge-Se amorphous chalcogenide - gold nanostructures. J. Non Cryst.Solids. 2021. 553. P.120491. doi:10.1016/j.jnoncrysol. 2020.120491.

https://doi.org/10.1016/j.jnoncrysol.2020.120491

32. M.L. Trunov. Unusual polarization dependent optical erasure of surface relief gratings on amorphous chalcogenide films. Reiestratsiia, zberihannia i obrobka danykh. Shchorichna pidsumkova naukova konferentsiia, 28-29 veresnia 2020 roku: zbirnyk / za red. V.V. Petrova. Kyiv: IPRI NAN Ukrainy. 2020. 134 s. Reestratsia, Zberigannja ta Obrobka Danych. Kyiv.2020. P.53-54, published by Institute for Information Recording of NASU.

33. I. Voynarovych, R. Poehlmann, S. Schroeter and M. Vlcek. Fabrication of Surface Relief Optical Elements in Ternary Chalcogenide Thin Films by Direct Laser Writing. DOI: 10.5220/0005404001340139. In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS-2015). Р. 134-139. ISBN: 978-989-758-093-245.

https://doi.org/10.5220/0005404001340139

34. V.V. Petrov, А.A. Kryuchyn, I.V. Gorbov, I.O. Kossko, S.O. Kostyukevych. Analysis of properties of optical carriers after long-term storage. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2009. 12, №4. P.399-402.

https://doi.org/10.15407/spqeo12.04.399

А. А. Крючин, В. В. Петров, В. М. Рубіш, М.  Л. Трунов, С. О. Костюкевич, К. В. Костюкевич

ТЕХНОЛОГІЇ СТВОРЕННЯ ПОВЕРХНЕВИХ РЕЛЬЄФІВ  НА ПЛІВКАХ ХАЛЬКОГЕНІДНИХ НАПІВПРОВІДНИКІВ

Проведено аналіз базових технологій формування мікрорельєфних структур на поверхні плівок халькогенідних напівпровідників. Визначені переваги створення мікрорельєфних структур на поверхні таких плівок методом прямого лазерного запису. Представлено результати експериментальних досліджень та визначено перспективні технології створення дифракційних оптичних елементів у тонких плівках халькогенідних напівпровідників.  

Ключові слова: поверхневий рельєф, халькогенідні напівпровідники, хімічне травлення, прямий лазерний запис.