Optoelectron. Semicond. Tech. 57, 133-144 (2022)

A. A. Kryuchуn, V. V. Petrov, V. M. Rubish, M. L. Trunov, S. O. Kostyukevych, K. V. Kostyukevych


A review of recent progress in optical recording of surface relief structures in the films of amorphous chalcogenides is presented. Various aspects related to light-driven macroscopic effects for these materials (changes in solubility, local evaporation, volume changes, mass-transport and so on) where stimulated surface patterning takes place due to the interaction of matter with light are discussed. Experimental data describing different aspects of surface relief patterning using direct recording by tigtly focused single or structured light beams are summarized.



1. F. Capasso. The future and promise of flat optics: a personal perspective. Nanophotonics. 2018. 7, №6. P.953-957.

2. She Alan, Zhang Shuyan, Shian Samuel, R.David. Clarke and Federico Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express. 2018. 26. P.1573-1585.

3. Michael T. Gale,Markus Rossi, Joern Pedersen and Helmut Schuetz. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists.  Optical Engineering.1994. 33, №11.

4. M. Rossi, R. E. Kunz, & Herzig, H. P. Refractive and diffractive properties of planar micro-optical elements. Applied Optics.1995. 34, №26. 5996.  doi:10.1364/ao.34.005996.

5. N. Mohammad, M. Meem, B. Shen, et al. Broadband imaging with one planar diffractive lens. Sci Rep.2018. 8. 2799.

6. A. Braun and S. A. Maier. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors. ACS Sens.2016. 1, №9. P. 1155-1162.

7. S. Schroeter, M. Vlček, R. Poehlmann, and A. Fišerová. Efficient diffractive optical elements in chalcogenide glass layers fabricated by direct DUV laser writing. J. Phys. Chem. Solids.2007. 68, №5-6. P. 916-919.

8. V. V. Petrov, A. A. Kryuchyn, S. O. Kostyukevych, V. M. Rubish. Direct laser writing of microrelief structures on chalcogenide glass by laser beam recorder of master discs.Data Recording, Storage & Processing. 2020. 22, №1. P. 3-11.

9. A.A. Kryuchyn, V.V. Petrov, V.M. Rubish, S.A. Kostyukevych. The direct laser writing micro relief structures on chalcogenide glass by laser beam recorder of master discs. AbstractBook, 9thInternational Conference оn Amоrphous and Nanostructured Chalcogenides Сhisinau, Republic of Moldova, June 30 - Jule 4, 2019. P. 8-9.

10. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses. Optica. 2019. 6, №6. P.805-810;

11. Sivan Tzadka Shalit, Natali Ostrovsky, Hadar Frankenstein Shefa, Evyatar Kassis, Shay Joseph, Mark Schvartzman. Direct nanoimprint of chalcogenide glasses with optical functionalities via solvent-based surface softening. Optics Express. 2020. 30, №15. P .26229.

12. Dor Yehuda, Eviatar Kassis, Shay Joseph, and Mark Schvartzman.Direct soft imprint of chalcogenide glasses.Vacuum Sci. & Technology. 2018. 36. 031602;

13. Y. Isbi, S. Sternklar, E. Granot, V. Lyubin, M. Klebanov, A. Lewis. Sub-wavelength optical recording on chalcogenide glassy film. Optics Communications.1999. 171, №4/6. P.219-223;

14. Y. Zha, M. Waldmann, & C. B. Arnold. A review on solution processing of chalcogenide glasses for optical components. Optical Materials Express.2013. 3, №9.1259. doi:10.1364/ome.3.001259

15. S. Kostyukevych, P. Shepeliavyi, S. Svechnikov. N.L. Moskalenko, V.M. Tomchuk, A.A. Koptyuh, A.V. Volkov, N.L. Kazansky, G.F. Kostyuk. Formation of diffractive optical elements using inorganic laser lithography. Data Recording, Storage and Processing. 2002. 4, №3. P. 3-12.

16. E. Achimova. Direct surface relief formation in nanomultilayers based on chalcogenide glasses: A review. Surface Engineering and Applied Electrochemistry. 2016 52, №5. P. 456-468. 10.3103/S1068375516050021.

17. S. Wong, M. Deubel, F. Perez-Willard, S. John, G.A. Ozin, M. Wegener, G. von Freymann Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses. Adv.Mater.2006. 18. 265. doi: 10.1002/adma.200501973

18. V. Petrov, A. Kryuchin, S. Kostyukevych, V. Rubish. Inorganic Photolithography. Institute for Physics of Metals, NAS of Ukraine, Kyiv. 2007. 195 p.

19. S. Kostyukevych, P. Shepeliavyi, R. Moskalenko, V. Wenger, V. Petrov, A. Kryuchyn, S. Shanoilo. The study of the mastering of compact discs on inorganic photoresists. Data Recording, Storage and Processing. 2001. 3, №4. P. 5-14.

20. A. Kryuchyn, V. Petrov, V. Rubish, M. Trunov, P. Lytvyn, S. Kostyukevych. Formation of Nanoscale Structures on Chalcogenide Films. Physica status solidi (b). 2017. 255. 201700405.DOI: 10.1002/pssb.201700405.

21. I. Indutny, A. Kryuchyn, Yu. Borodin, V.A. Danko, M.V. Lukaniuk, V.I. Minko, P.E. Shepelyavy, E.V. Gera, V.M. Rubish. Optical Recording of Micro- and Nano- Relief Structures on Inorganic Resists Ge-Se. Data Recording, Storage and Processing. 2013. 15, №4. P. 3-14.

22. A. Kryuchyn, V. Petrov, V. Rubish, A. Lapchuk, S. Kostyukevych, P. Shepeliavyi, K. Kostyukevych. High-speed optical recording in vitreous chalcogenide thin films. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 17, №4. P. 389-393.

23. A. Kovalskiy. Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. Journal of Micro/Nanolithography, MEMS, and MOEMS. 2009. 8, №4. 043012. doi:10.1117/1.3273966.

24. A. Stronski. Chalcogenide glasses: advances in research and applications;

25. V. Takats, M. Trunov, K. Vad, J. Hakl, D. Beke, Y. Kaganovskii, S. Kökényesi. Lov-temperature photo-induced mass transfer in thin As20Se80 amorphous films. Materials Letters. 2015. 160. P.558-561.

26. M.L. Trunov, P.M. Lytvyn. Selective light-induced mass transport in amorphous AsxSe100-X films driven by the composition tuning: Effect of temperature on maximum acceleration. J.Non-Cryst.Solids. 2018. 493. P.86-93.

27. Yu Kaganovskii, M.L Trunov, D.L Beke, S Kökényesi. Mechanism of photo induced mass transfer in amorphous chalcogenide films. Materials Letters. 2012. 66. P.159-161.

28. M.L. Trunov, P.M. Lytvyn, P.M. Nagy, A.Csik, V.M. Rubish, S. Kökényesi. Light-induced mass transport in amorphous chalcogenides:Toward surface plasmon-assisted nanolithography and near-field nanoimaging. Phys. Stat. Solidi(b).2014. 251, №7. P.1354-1362;

29. I. Charnovych, A. Szabo, Attila Lajos Toth, Janos Volk, M.L. Trunov, S. Kökényesi. Plasmon assisted photoinduced surface changes in amorphous chalcogenide layer. J.Non-Cryst.Solids. 2013. 377. P.200-204.

30. V.V. Petrov, A.A. Kriuchyn, Yu.A. Kunytskyi, V.M. Rubish, A.S. Lapchuk, S.O. Kostiukevych. Metody nanolitohrafii. Kyiv: Naukova dumka. 2015. 262 s.

31. I. Csarnovich, M. Veres, P. Nemec, S. Molnár, & S. Kökényesi. Surface plasmon enhanced light-induced changes in Ge-Se amorphous chalcogenide - gold nanostructures. J. Non Cryst.Solids. 2021. 553. P.120491. doi:10.1016/j.jnoncrysol. 2020.120491.

32. M.L. Trunov. Unusual polarization dependent optical erasure of surface relief gratings on amorphous chalcogenide films. Reiestratsiia, zberihannia i obrobka danykh. Shchorichna pidsumkova naukova konferentsiia, 28-29 veresnia 2020 roku: zbirnyk / za red. V.V. Petrova. Kyiv: IPRI NAN Ukrainy. 2020. 134 s. Reestratsia, Zberigannja ta Obrobka Danych. Kyiv.2020. P.53-54, published by Institute for Information Recording of NASU.

33. I. Voynarovych, R. Poehlmann, S. Schroeter and M. Vlcek. Fabrication of Surface Relief Optical Elements in Ternary Chalcogenide Thin Films by Direct Laser Writing. DOI: 10.5220/0005404001340139. In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS-2015). Р. 134-139. ISBN: 978-989-758-093-245.

34. V.V. Petrov, А.A. Kryuchyn, I.V. Gorbov, I.O. Kossko, S.O. Kostyukevych. Analysis of properties of optical carriers after long-term storage. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2009. 12, №4. P.399-402.

А. А. Крючин, В. В. Петров, В. М. Рубіш, М.  Л. Трунов, С. О. Костюкевич, К. В. Костюкевич


Проведено аналіз базових технологій формування мікрорельєфних структур на поверхні плівок халькогенідних напівпровідників. Визначені переваги створення мікрорельєфних структур на поверхні таких плівок методом прямого лазерного запису. Представлено результати експериментальних досліджень та визначено перспективні технології створення дифракційних оптичних елементів у тонких плівках халькогенідних напівпровідників.  

Ключові слова: поверхневий рельєф, халькогенідні напівпровідники, хімічне травлення, прямий лазерний запис.