1. Surface-Enhanced Raman Scattering. Physics and Applications, ed. by K. Kneipp, M. Moscovits, and H. Kneipp. Springer, Berlin. 2006.
2. Maier S.A. Plasmonics, Fundamentals and Applications. New York: Springer Science & Business Media. 2007. 224 p.
https://doi.org/10.1007/0-387-37825-1
3. Homola J. Surface plamon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008. 108, № 2. Р. 462-493.
https://doi.org/10.1021/cr068107d
4. Shankaran D. R., Gobi K. V. A., Miura N. Recent advancements in surface plasmonresonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor. Actuat. B: Chem. 2007. 121, №1. P. 158-177.
https://doi.org/10.1016/j.snb.2006.09.014
5. Indutnyi I., Ushenin Yu., Hegemann D., Vandenbossche M., Myn'ko V., Lukaniuk M., Shepeliavyi P., Korchovyi A., Khrystosenko R.. Enhancing surface plasmon resonance detection using nanostructured Au chips. Nanoscale Res. Lett. 2016. 11, Article 535 (6 pages).
https://doi.org/10.1186/s11671-016-1760-7
6. Atwater H. A., Polman A. Plasmonics for improved photovoltaic devices, Nat. Mater. 2010. 9. P. 205-213.
https://doi.org/10.1038/nmat2629
7. Oulton R. F., Sorger V. J., Zentgraf T., Ma R.-M., Gladden C., Dai L., Bartal G., Zhang X. Plasmon lasers at deep subwavelength scale. Nature. 2009. 461. P. 629-632.
https://doi.org/10.1038/nature08364
8. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006. 311, № 5758. P.189-193.
https://doi.org/10.1126/science.1114849
9. Feng L., Tetz K. A., Slutsky B., Lomakin V., Fainman Y. Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves. Appl. Phys. Lett. 2007. 91, №8. 081101.
https://doi.org/10.1063/1.2772756
10. Anwar R. S., Ning H., Mao L. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 2018. 4, № 4. P. 244-257.
https://doi.org/10.1016/j.dcan.2017.08.004
11. Hutley C., Maystre D. The total absorption of light by a diffraction grating. Opt. Commun. 1976. 19, № 3. P. 431-436.
https://doi.org/10.1016/0030-4018(76)90116-4
12. Maystre D. Diffraction gratings: An amazing phenomenon. C. R. Phys. 2013. 14, № 4. P. 381-392.
https://doi.org/10.1016/j.crhy.2013.02.003
13. Pockrand I. Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings. J. Phys. D: Appl. Phys. 1976. 9, № 17. P. 2423-2432.
https://doi.org/10.1088/0022-3727/9/17/003
14. Maystre D. Theory of Wood's Anomalies. In: Plasmonics (eds. Enoch S. and Bonod N.), Springer Series in Optical Sciences 167. Springer-Verlag Berlin Heidelberg. 2012. Chapter 2. DOI: 10.1007/978-3-642-28079-5-2.125.
https://doi.org/10.1007/978-3-642-28079-5_2
15. Zaidi S. H., Yousaf M., Brueck S. R. J. Grating coupling to surface plasma waves. I. First-order coupling. J. Opt. Soc. Am. B. 1991. 8, № 4. Р. 770-779.
https://doi.org/10.1364/JOSAB.8.000770
16. Indutnij I. Z., Minko V. I., Sopinskij M. V., Danko V. A., Litvin P. M., Korchovij A. A. Zalezhnist efektivnosti zbudzhennya poverhnevih plazmon-polyaritoniv vid glibini relyefu alyuminiyevoyi gratki. Optoelektronika i poluprovodnikovaya tekhnika. 2020. 55, C. 117-125.
17. Zaidi S. H., Yousaf M., and Brueck S. R. J. Grating coupling to surface plasma waves. II. Interactions between first- and second-order coupling. J. Opt. Soc. Am. B. 1991. 8, № 6. P. 1348-1359.
https://doi.org/10.1364/JOSAB.8.001348
18. Pipino A. C. R. and Schatz G. C. Surface-profile dependence of photon-plasmon-polariton coupling at a corrugated silver surface. J. Opt. Soc. Am. B. 1994. 11, № 10. P. 2036-2045.
https://doi.org/10.1364/JOSAB.11.002036
19. Rosengart E.-H. and Pockrand I. Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt. Lett. 1977. 1, № 6. P. 194-195.
https://doi.org/10.1364/OL.1.000194
20. Pipino A. C. R., Van Duyne R. P. and Schatz G. C. Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement. Phys. Rev. B. 1996. 53, № 7. P. 4162-4169.
https://doi.org/10.1103/PhysRevB.53.4162
21. Dan'ko V., Indutnyi I., Min'ko V., Shepelyavyi P. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectron. Instrument. Proc. 2010. 46, № 5. P. 483-490.
https://doi.org/10.3103/S8756699011050116
22. Dan'ko V., Dmitruk M., Indutnyi I., Mamykin S., Myn'ko V., Lukaniuk M., Shepelyavyi P., Lytvyn P. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. Pap. 497.
https://doi.org/10.1186/s11671-015-1203-x
23. Dmitruk N. L., Litovchenko V. G., Strizhevskij V. L. Poverhnostnye polyaritony v poluprovodnikah i dielektrikah. K.: Naukova Dumka. 1989. 375 s.
24. Rakić D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 1995. 34, № 22. Р. 4755-4767.
https://doi.org/10.1364/AO.34.004755