https://doi.org/10.15407/iopt.2024.59.152
Optoelectron. Semicond. Tech. 59, 152-163 (2024)
M.V. Sopinskyy, I.Z. Indutnyi, K.V. Michailovska, P.E. Shepelyavyi, V.O. Yuchymchuk, G.P. Olkhovik
STUDY OF THERMOSTIMULATED CHANGES IN THE EDGE ABSORPTION SPECTRUM OF SIOx SUBOXIDE FILMS
In the spectral range of wavelengths λ = 400–750 nm, experimental transmission (T) and reflection (R) spectra of suboxide SiOx films (x » 1.3), deposited on quartz substrates by vacuum evaporation of silicon monoxide, were obtained before and after their annealing in a nitrogen atmosphere over a wide temperature range of 100–1100 °C. The evolution of the absorption spectrum A(λ) = 1-R-T of the studied samples with an increase in the annealing temperature Ta from the substrate temperature during deposition Td = 100 °C to 500 °C consists in its blue shift, and starting from Ta = 600 °C this trend changes to the opposite. The maximum red shift was observed at Ta = 910 °C. After annealing at 1100 °C, the absorption spectrum becomes close to the spectrum of the unannealed film. The maximum relative changes in absorption in the long-wave part of the spectrum can be associated with a decrease in defect absorption, and changes in absorption in the range λ ≈ 480-560 nm ― with a change in the width of the band gap of the film due to annealing. These conclusions are confirmed by the analysis of the absorption coefficient spectra, plotted in Urbach and Tauc coordinates. With an increase in the annealing temperature to 500 °C, there is a twofold decrease in the Urbach energy EU and an increase in the optical (Tauc) bandgap width Ego, which is explained by the structural ordering of the SiO1.3 film. With further growth of Ta up to 1010 °C, the increase of Ego changes to a decrease, while the value of EU changes little. Such behavior of Ego, EU is explained by the formation of amorphous silicon nanoparticles, whose optical bandgap and mobility gap Eg exhibit a size effect. The estimates of the value of Eg for both the SiO1.3 film and amorphous silicon nanoparticles agree well with the values available in the literature, obtained from theoretical calculations. The values of Ego and EU for the film annealed at 1100 °C indicate the appearance of silicon nanocrystallites in it.
Keywords: non-stoichiometric silicon oxide, SiOx, silicon nanoparticles, absorption edge, band gap, thermal annealing.
References
1. Hass G., Salzberg C.D. Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns. J. Opt. Soc. Am. 1954. 44, № 3. P. 181–187.
2. Savage J.A. Infrared Optical Materials and their Antireflection Coatings.1985. Adam Higler, Ltd., Bristol.
3. Wetch K.W. Large-range refractive-index control of silicon monoxide antireflection coatings using oblique incident thermal evaporation. Appl. Opt. 1991. 30, № 28. P. 4133–4135.
4. Tomozeiu N. Silicon Oxide (SiOx, 0< x < 2): a Challenging Material for Optoelectronics, in Optoelectronics —Materials and Techniques, edited by P. Predeep. Chapter 3. IntechOpen.2011.
5. Filonenko O.V., Lobanov V.V. Non-stoichiometric silicon oxides SiOx (x < 2). Surface. 2018. 10, №2. P. 118136.
6. Melnik V.P., Popov V.G., Romanyuk B.M. et al. Luminescent properties of the structures with embedded silicon nanoclusters: Influence of technology, doping and annealing (Review). Semiconductor Physics, Quantum Electronics & Optoelectronics. 2023. 26, № 3. P. 278–302.
7. Falcony C., Estrada-Wiese D., De Anda J. et al. Low temperature (<700 °C) SiO2 and Si-rich SiO2 films: Short review. J. Vac. Sci. Technol. B. 2023. 41, № 3. Article 030801.
8. Sarikov A. Thermodynamic theory of phase separation in nonstoichiometric Si oxide films induced by high-temperature anneals. Nanomanufacturing. 2023. 3, № 3. P.293–314.
9. Nayfeh M.H. Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends. Elsevier Publishing, Cambridge, MA. 2018.
10. Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss. 2020. 222. P. 10–81.
11. Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives. Ed. L. Khriachtchev. Pan Stanford Publishing. 2016.
12. Yuan Z., Anopchenko A., Pavesi L. Innovative quantum effects in silicon for photovoltaic applications. Ch. 10 in: Advanced Silicon Materials for Photovoltaic Applications. Ed. S. Pizzini. John Wiley & Sons. 2012.
13. Sopinskyy M., Khomchenko V. Electroluminescence in SiOx films and SiOx film-based systems. Curr. Opin. Solid State Mater. Sci. 2003. 7, № 2. P. 97–109.
14. Bratus’ O.L., Evtukh A.A., Ievtukh V.A., Litovchenko V.G. Nanocomposite SiO2(Si) films as a medium for non-volatile memory. J. Non-Cryst. Solids. 2008. 354, № 35–39. P. 4278–4281.
15. Shieh J.-M., Lai Y.-F., Ni W.-X. et al. Enhanced photoresponse of a metal-oxide semiconductor photodetector with silicon nanocrystals embedded in the oxide layer. Appl. Phys. Lett. 2007. 90, № 5. Article 051105.
16. Evtukh A.A., Litovchenko V.G., Semenenko M.O. Electrical and emission properties of nanocomposite SiOx(Si) and SiO2(Si) films. J. Vac. Sci. Technol. B. 2006. 24, № 2. P. 945–949.
17. Yao J., Sun Z., Zhong L. et al. Resistive switches and memories from silicon oxide. Nano Lett. 2010. 10, № 10. P. 4105–4110.
18. Mehonic A., Shluger A.L., Gao D. et al. Silicon oxide (SiOx): A promising material for resistance switching? Adv. Mater. 2018. 30, № 43. Article 1801187.
19. Chen W., Fang R., Balaban M.B. et al. A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology.2016. 27, № 25. Article 255202.
20. Ugwumadu C., Subedi K.N., Thapa R. et al. Structure, vibrations and electronic transport in silicon suboxides: Application to physical unclonable functions. J. Non-Cryst. Solids: X. 2023. 18. Article 100179.
21. Bratus’ V.Ya., Yukhimchuk V.A., Berezhinsky L.I. et al. Structural transformations and silicon nanocrystallite formation in SiOx films. Semiconductors. 2001. 35, № 7, P. 821–826.
22. Nakamura M., Mochizuki Y., Usami K. et al. Infrared absorption spectra and compositions of evaporated silicon oxides (SiOx). Sol. St. Commun. 1984. 50, № 12. P. 1079–1081.
23. Raciti R., Bahariqushchi R., Summonte C. et al. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis. J. Appl. Phys. 2017. 121, № 23. Article 234304.
24. Cody G.D. Urbach edge of crystalline and amorphous silicon: a personal review. J. Non-Cryst. Solids. 1992. 141. P. 3–15.
25. O'Leary S.K., Johnson S.R., Lim P.K. The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis. J. Appl. Phys. 1997. 82, № 7. P.3334–3340.
26. Saito K. and Ikushima A.J. Absorption edge in silica glass. Phys. Rev. B. 2000. 62, № 13. P. 8584–858.
27. Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B. 1966.15, № 2. P. 627–637.
28. Freeman E.C. and William P. Optical constants of rf sputtered hydrogenated amorphous Si. Phys. Rev. B. 1979. 20, №2. P. 716–728.
29. Persans P.D., Ruppert A.F., Chan S.S., Cody G.D. Relationship between bond angle disorder and the optical edge of a-Ge:H. Solid State Commun. 1984. 51, № 4. P. 203–207.
30. Cody G.D., Tiedje T., Abeles B.et al. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 1980. 47, № 20. P. 1480–1483.
31. Grein C.H. and John S. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands. Phys. Rev. B. 1989. 39, № 2. P. 1140–1151.
32. Bondi R.J., Lee S. and Hwang G.S. First-principles study of the mechanical and optical properties of amorphous hydrogenated silicon and silicon-rich silicon oxide. Phys. Rev. B. 2010. 81, № 19. Article 195207.
33. Lisovskyy I.P., Indutnyy I.Z., Gnennyy B.N. et al. Structural-phase transformations in SiOx films in the course of vacuum heat treatment. Semiconductors. 2003. 37, № 1. P. 97-102.
34. Nikolenko A.S., Sopinskyy M.V., Strelchuk V.V. et al. Raman study of Si nanoparticles formation in the annealed SiOx and SiOx:Er,F films on sapphire substrate. J. Optoelectron. Adv. Mater. 2012. 14, № 1–2. P. 120–124.
35. Sarikov A. Crystallization behaviour of amorphous Si nanoinclusions embedded in silicon oxide matrix. Phys. Status Solidi A. 2019. 217, № 4. Article 1900513.
36. Lisovskyy I.P., Voitovich M.V., Sarikov A.V. et al. Transformation of the structure of silicon oxide during the formation of Si nanoinclusions under thermal annealings. Ukr. J. Phys. 2009. 54, № 4. P. 383–390.
37. Lee B.G., Hiller D., Luo J.W. et al. Strained interface defects in silicon nanocrystals. Adv. Funct. Mater. 2012. 22, № 15. P. 3223–3232.
38. Ballester M., Márquez A.P., García-Vázquez C. et al. Energy-band-structure calculation by below-band-gap spectrophotometry in thin layers of non-crystalline semiconductors: A case study of unhydrogenated a-Si. J. Non-Cryst. Solids. 2022. 594. Article 121803.
39. Askari S., Svrcek V., Maguire P., Mariott D. The interplay of quantum confinement and hydrogenation in amorphous silicon quantum dots. Adv. Mater. 2015. 27, № 48. P. 8011–8016.
40. Feng Y., Lin S., Huang S., Shrestha S., Conibeer G. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals? J. Appl. Phys. 2015. 117, №2. Article 125701.
41. Collins R.W., Koh J., Ferlauto A.S. et al. Real time analysis of amorphous and microcrystalline silicon film growth by multichannel ellipsometry. Thin Solid Films. 2000. 364, № 1-2. P. 129-137.
42. Abdulraheem Y., Gordon I., Bearda T. et al. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD. AIP Advances. 2014. 4, № 5. Article 057122.
43. Nikitin T., Velagapudi R., Sainio J. et al. Optical and structural properties of SiOx films grown by molecular beam deposition: Effect of the Si concentration and annealing temperature. J. Appl. Phys. 2012. 112, № 9. Article 094316.
М.В. Сопінський, І.З. Індутний, К.В. Михайловська, П.Є. Шепелявий, В.О. Юхимчук, Г.П. Ольховик
ДОСЛІДЖЕННЯ ТЕРМОСТИМУЛЬОВАНИХ ЗМІН СПЕКТРА ПРИКРАЙОВОГО ПОГЛИНАННЯ СУБОКСИДНИХ ПЛІВОК SIOX
В спектральному інтервалі довжин хвиль λ = 400750 нм отримано експериментальні спектри пропускання T і відбивання R субоксидних плівок SiOx (x 1,3), осаджених на кварцові підкладки вакуумним випаровуванням моноокису кремнію, до та після їх відпалу в атмосфері азоту в широкому температурному діапазоні 100÷1100 С. Еволюція спектра поглинання досліджуваних зразків A(λ) = 1-R-T з ростом температури відпалу Ta від температури підкладки при осадженні Td = 100 С до 500 С полягає в його короткохвильовому зсуві, а вже починаючи з Ta = 600С ця тенденція змінюється на протилежну. Максимальний довгохвильовий зсув зафіксовано при Ta = 910 С. Після відпалу при 1100С спектр поглинання стає близьким до спектра невідпаленої плівки. Максимальні відносні зміни поглинання в довгохвильовій частині спектра можна пов'язати зі зменшенням дефектного поглинання, а зміни поглинання в області λ ≈ 480÷560 нм ― зі зміною ширини забороненої зони плівки внаслідок відпалу. Вказані висновки підтверджуються аналізом спектрів коефіцієнта поглинання α, побудованих в урбахівських та тауцівських координатах. При рості температури відпалу до 500 С має місце зменшення енергії Урбаха EU вдвічі та ріст оптичної (тауцівської) ширини забороненої зони Ego, що пояснюється структурним впорядкуванням плівки SiO1,3. З подальшим ростом Ta аж до 1010 С, ріст Ego змінюється її зменшенням, а величина EU змінюється мало. Така поведінка Ego, EU пояснюється формуванням аморфних кремнієвих наночасток, оптична ширина забороненої зони і ширина щілини рухливості Eg яких проявляють розмірний ефект. Проведені оцінки величини Eg як для плівки SiO1,3, так і аморфних кремнієвих наночасток непогано узгоджуються з наявними в літературі значеннями, отриманими з теоретичних розрахунків. Значення Ego, EU для відпаленої при 1100 С плівки вказують на появу в ній кремнієвих нанокристалітів.
Ключові слова: нестехіометричний оксид кремнію, SiOx, кремнієві наночастки, край поглинання, ширина забороненої зони, термічний відпал.