1. D'Orazio P. Biosensors in clinical chemistry-2011 update. Clin. Chim. Acta.2011. 412. Р.1749-1761.
https://doi.org/10.1016/j.cca.2011.06.025
2. McWhirter A., Wahlstrom L., Tudos, A.J., Schasfoort R.B.M. Handbook of Surface Plasmon Resonance. 2008. RSC: Cambridge, UK.
3. Justino C.I.L., Rocha-Santos T.A., Duarte A.C., Rocha-Santos T.A. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 2010. 29.Р. 1172-1183.
https://doi.org/10.1016/j.trac.2010.07.008
4. Erickson D., Mandal S., Yang A.H.J., Cordovez B. Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid. Nanofluid. 2008. 4. P.33-52.
https://doi.org/10.1007/s10404-007-0198-8
5. Nguyen H., Park J., Kang S., Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors. 2015. 15. P. 10481-10510.
https://doi.org/10.3390/s150510481
6. Patching S.G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta Biomembr. 2014. 1838. P. 43-55.
https://doi.org/10.1016/j.bbamem.2013.04.028
7. Helmerhorst E., Chandler D.J., Nussio M., Mamotte C.D. Real-Time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clin. Biochem. Rev. 2012. 33. P. 161-173.
8. Yanase Y., Hiragun T., Yanase T., Kawaguchi T.; Ishii K., Hide M. Application of spr imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol. Int. 2013. 62. P. 163-169.
https://doi.org/10.2332/allergolint.12-RA-0505
9. Yanase Y., Hiragun T., Ishii K., Kawaguchi T., Yanase T., Kawai M., Sakamoto K., Hide M. Surface plasmon resonance for cell-based clinical diagnosis. Sensors. 2014. 14. P. 4948-4959.
https://doi.org/10.3390/s140304948
10. Kihm K.D., Cheon S., Park J.S., Kim H.J., Lee J.S., Kim I.T., Yi H.J. Surface plasmon resonance (SPR) reflectance imaging: Far-Field recognition of near-field phenomena. Opt. Lasers Eng. 2012. 50. P.64-73.
https://doi.org/10.1016/j.optlaseng.2011.07.003
11. Singh P. SPR biosensors: Historical perspectives and current challenges. Sens. Actuators B Chem. 2016. 229. P. 110-130.
https://doi.org/10.1016/j.snb.2016.01.118
12. Fedorenko A., Dorozhinsky G., Dorozhinska H., Kachur N. Maslov V., Investigation of the Possibility to Use Ge p-i-n Photodiodes in Infrared SPR Sensors. European Journal of Applied Physics. 2021. 3, №4. P. 38-42.
https://doi.org/10.24018/ejphysics.2021.3.4.95
13. Azzam R., Bashara B. Ellypsometryia i poliarizovannyi svet. M.: Mir. 1981.
14. Abeles F. Optical Properties of Thin Absorbing Films. J. Opt. Soc. Am.. 1957. 47. P. 473-482.
https://doi.org/10.1364/JOSA.47.000473
15. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys. 1968. 216. P. 398-410.
https://doi.org/10.1007/BF01391532
16. Brockman J. M., Nelson B. P., Corn R. M. Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films. Ann. Rev. Phys. Chem. 2000. 51. P. 41-63.
https://doi.org/10.1146/annurev.physchem.51.1.41
17. Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J. Mol. Recognit. 2004. 17. P. 151-161.
https://doi.org/10.1002/jmr.660
18. Malmborg A. C., Borrebaeck C. A. K. BIAcore as a tool in antibody engineering. J. Immun. Meth. 1995. 183. P. 7-13.
https://doi.org/10.1016/0022-1759(95)00018-6
19. McMahon J. M., Schatz G. C., Gray S. K. Correction: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2015. 17. P.19670-19671.
https://doi.org/10.1039/C5CP90112J
20. Wu P. C., Kim T. H., Brown A. S., Losurdo M., Bruno G., Everitt H. O. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. Appl. Phys. Lett. 2007. 90. P. 103119.
https://doi.org/10.1063/1.2712508
21. Sachet E. Transition Metal Oxides for Infrared Optoelectronics. North Carolina State University. 2015.
22. Zeman E. J., Schatz G. C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. Journal of Physical Chemistry. 1987. 91. P. 634-643.
https://doi.org/10.1021/j100287a028
23. Cooper B., Ehrenreich H., Philipp H. Optical Properties of Noble Metals. II. Phys. Rev. 1965. 138. P.A494.
https://doi.org/10.1103/PhysRev.138.A494
24. Ehrenreich H., Philipp H. Optical Properties of Ag and Cu. Phys. Rev. 1962. 128. P.1622.
https://doi.org/10.1103/PhysRev.128.1622
25. Franzen S. Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold. Journal of Physical Chemistry C. 2008. 112. P. 6027-6032.
https://doi.org/10.1021/jp7097813
26. Frutos A. G., Weibel S. C., Corn R. M. Measurements by surface plasmon resonance monitor changes in thickness or the index of refraction of ultrathin organic films on metal surfaces. Analytical Chemistry. 1999. 71. P. 3935-3940.
https://doi.org/10.1021/ac9905165
27. Nelson B.P., Frutos A.G., Brockman J.M., Corn R. M. Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Anal. Chem. 1999. 71. P. 3928-3934.
https://doi.org/10.1021/ac990517x
28. Nyga P., Drachev V. P., Thoreson M. D., Shalaev V. M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics B. 2008. 93. P.59-68.
https://doi.org/10.1007/s00340-008-3145-9
29. Naik G. V., Shalaev V. M., Boltasseva A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013. 25. P. 3264-3294.
https://doi.org/10.1002/adma.201205076
30. Naik G. V., Kim J., Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Exp. 2011. 1. P.1090-1099.
https://doi.org/10.1364/OME.1.001090
31. Liu X. G., Kang J. H., Yuan H. T., Park J., Cui Y., Hwang H. Y., Brongersma M. L. Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation. Acs Photonics. 2018. 5. P.1493-1498.
https://doi.org/10.1021/acsphotonics.7b01517
32. Kehr S. C., Liu Y. M., Martin L. W., Yu P., Gajek M., Yang S. Y., Yang C. H., Wenzel M. T., Jacob R., von Ribbeck H. G., Helm M., Zhang X., Eng L. M., Ramesh R. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling. Nat. Commun. 2011. 2. 249. P.1-9.
https://doi.org/10.1038/ncomms1249
33. Zhong Y. J., Malagari S. D., Hamilton T., Wasserman D., Review of mid-infrared plasmonic materials. J Nanophoton. 2015. 9. P. 093791.
https://doi.org/10.1117/1.JNP.9.093791
34. Lu Z., Pan X., Ma Y., Li Y., Zheng L., Zhang D., Xu Q., Chen Z., Wang S., Qu B., Liu F., Huang Y., Xiao L., Gong Q. Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Adv. 2015. 5. P.11175-11179.
https://doi.org/10.1039/C4RA16385K
35. Szunerits S., Boukherroub R. Introduction to Plasmonics: Advances and Applications. Pan Stanford. 2015.
https://doi.org/10.1201/b18229
36. Kim J., Naik G. V., Gavrilenko A. V., Dondapati K., Gavrilenko V. I., Prokes S. M., Glembocki O. J., Shalaev V. M., Boltasseva A. Optical Properties of Gallium-Doped Zinc Oxide-A Low-Loss Plasmonic Material: First-Principles Theory and Experiment. Phys. Rev. X. 2013. 3. P. 041037.
https://doi.org/10.1103/PhysRevX.3.041037
37. Sachet E., Losego M. D., Guske J., Franzen S., Maria J. P. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films. Appl. Phys. Lett. 2013. 102. P. 051111.
https://doi.org/10.1063/1.4791700
38. Minami T., Nanto H., Takata S. Optical Properties of Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering. Japanese Journal of Applied Physics. 1985. 24. P. L605-L607.
https://doi.org/10.1143/JJAP.24.L605
39. Naik G. V., Boltasseva A. Semiconductors for plasmonics and metamaterials. Phys. Stat. Sol.-Rapid Res. Lett. 2010. 4. P.295-297.
https://doi.org/10.1002/pssr.201004269
40. Rhodes C., Franzen S., Maria J.-P., Losego M., Leonard D. N., Laughlin B., Duscher G., Weibel S. Surface plasmon resonance in conducting metal oxides. Journal of Applied Physics. 2006. 100. P. 054905.
https://doi.org/10.1063/1.2222070
41. Brar V. W., Jang M. S., Sherrott M., Lopez J. J., Atwater H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 2013. 13. P.2541-2547.
https://doi.org/10.1021/nl400601c
42. Law S., Yu L., Wasserman D. J. Epitaxial growth of engineered metals for mid-infrared plasmonics. Vac. Sci. Tech. B, Nanotech. Microelec.: Mater., Proc., Meas. Phen. 2013. 31. P.03C121.
https://doi.org/10.1116/1.4797487
43. Sachet E., Shelton C. T., Harris J. S., Gaddy B. E., Irving D. L., Curtarolo S., Donovan B. F., Hopkins P. E., Sharma P. A., Sharma A. L., Ihlefeld J., Franzen S., Maria J. P. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 2015. 14. P. 414-420.
https://doi.org/10.1038/nmat4203
44. Franzen S., Rhodes C., Cerruti M., Gerber R. W., Losego M., Maria J. P., Aspnes D. E. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 2009. 34. P. 2867-2869.
https://doi.org/10.1364/OL.34.002867
45. Rhodes C., Cerruti M., Efremenko A., Losego M., Aspnes D. E., Maria J. P., Franzen S., Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 2008. 103. P.093108.
https://doi.org/10.1063/1.2908862
46. Dorozhynska H.V., Dorozhynskyi H.V., Sobol V.P., Vovk V.V., Androsiuk H.M., Maslov V.P., Kachur N.V. Vplyv materialu pryzmy na chutlyvist PPR-sensoriv. Optoеlektronyka і poluprovodnykovaia tekhnyka. 2020. № 55. S. 179-185.
47. Obreja P., Cristea D., Kusko M., Dinescu A. Polymer-based chips for surface plasmon resonance sensors. Journal of Optics A Pure and Applied Optics. 2008. 10. P. 064010.
https://doi.org/10.1088/1464-4258/10/6/064010
48. Gupta G., Kondoh J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens Actuators. B. 2007. 122. P. 381-388.
https://doi.org/10.1016/j.snb.2006.06.005
49. Brahmachari K., Ray M. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Front. Optoelectron. 2013. 6. P. 185-193.
https://doi.org/10.1007/s12200-013-0313-2
50. Herminjard S., Sirigu L., Herzig H. P., Studemann E., Crottini A., Pellaux J.-P., Gresch T., Fischer M., Faist J. Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. Opt. Express. 2009. 17. P. 293-303.
https://doi.org/10.1364/OE.17.000293
51. Patskovsky S., Kabashin A.V., Meunier M., Luong J. H.T. Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical. 2004. 97, №2-3. P. 409-414.
https://doi.org/10.1016/j.snb.2003.09.023
52. Jha R., Sharma A. K. Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A: Pure Appl. Opt. 2009.11. P. 1-7.
https://doi.org/10.1088/1464-4258/11/4/045502