1. Sun H., Lei Y., Fan S., Zhang Q., Guo H. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry. Phys. Lett. A. 2017. 381. P. 129-135.
https://doi.org/10.1016/j.physleta.2016.10.045
2. Sycz K., Gawlik W., Zachorowski J. Resonant Faraday effect in a Fabry-Perot cavity. Opt. Applicata. 2010. 40. P. 633-639.
3. Taskova E., Gateva S., Alipieva E., Kowalski K., Glódź M., Szonert J. Nonlinear Faraday rotation for optical limitation. Appl. Opt. 2004. 43. P. 4178-4181.
https://doi.org/10.1364/AO.43.004178
4. Ling H.Y. Theoretical investigation of transmission through a Faraday-active Fabry-Perot étalon. J. Opt. Soc. Am. A. 1994. 11. P. 754-758.
https://doi.org/10.1364/JOSAA.11.000754
5. Zamani M., Hocini A. Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals. J. Magn. Magn. Mater. 2018. 449. P. 435-439.
https://doi.org/10.1016/j.jmmm.2017.10.072
6. Mikhailova T.V., Berzhansky V.N., Shaposhnikov A.N. et al. Optimization of one-dimensional photonic crystals with double layer magneto-active defect. Opt. Mater. 2018. 78. P. 521-530.
https://doi.org/10.1016/j.optmat.2018.03.011
7. Gevorgyan A.H., Golik S.S. Band structure peculiarities of magnetic photonic crystals. J. Magn. Magn. Mater. 2017. 439. P. 320-327.
https://doi.org/10.1016/j.jmmm.2017.05.026
8. Ignatyeva D.O., Knyazev G.A., Kapralov P.O., Dietler G., Sekatskii S.K., Belotelov V.I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications, Sci. Reports. 2016. 6. P. 1-7.
https://doi.org/10.1038/srep28077
9. Jahani D., Soltani-Vala A., Barvestani J., Hajian H. Magneto-tunable one-dimensional graphene-based photonic crystal. J. Appl. Phys. 2014. 115. P. 153101-1-53101-9.
https://doi.org/10.1063/1.4870828
10. Da H., Liang G. Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene. Appl. Phys. Lett. 2011. 98. P. 261915-1-261915-3.
https://doi.org/10.1063/1.3605593
11. Chung K.H., Kato T., Mito S., Takagi H., Inoue M. Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators. J. Appl. Phys. 2010. 107. P. 09A930-1-09A930-2.
https://doi.org/10.1063/1.3353020
12. Inoue M., Baryshev A.V., Khanikaev A.B. et al. Magnetophotonic materials and their applications. IEICE Trans. Electron. 2008. E91-C. P.1630-1638.
https://doi.org/10.1093/ietele/e91-c.10.1630
13. Li Q., Hu L., Mao Q., Jiang H., Hu Z., Xie K., Wei Z. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals, Opt. Commun. 2018. 410. P. 431-437.
https://doi.org/10.1016/j.optcom.2017.10.049
14. Wen Zhou, Heming Chen, Ke Ji, Yuyang Zhuang. Vertically magnetic-controlled THz modulator based on 2-D magnetized plasma photonic crystal. Photonics and Nanostructures - Fundament. Appl. 2017. 23. P. 28-35.
https://doi.org/10.1016/j.photonics.2016.11.007
15. Deghdak R., Bouchemat M., Lahoubi M., Pu S., Bouchemat T., Otmani H. Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure. J. Comput. Electron. 2017. 16. P. 392-400.
https://doi.org/10.1007/s10825-017-0965-z
16. Baek S., Baryshev A.V., Inoue M. Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method, J. Appl. Phys. 2011. 109. P. 07B701-1-07B701-3.
https://doi.org/10.1063/1.3536661
17. Dokukin M.E., Baryshev A.V., Khanikaev A.B., Inoue M. Reverse and enhanced magneto-optics of opal-garnet heterostructures. Opt. Exp. 2009. 17. P. 9062-9070.
https://doi.org/10.1364/OE.17.009062
18. Wang Z., Fan S. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 2005. 30. P. 1989-1991.
https://doi.org/10.1364/OL.30.001989
19. Hocini A., Moukhtari R., Khedrouche D., Kahlouche A., Zamani M. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix. Opt. Commun. 2017. 384. P. 111-117.
https://doi.org/10.1016/j.optcom.2016.10.020
20. Pavlov V.V., Usachev P.A., Pisarev R.V. et al. Optical study of three-dimensional magnetic photonic crystals opal/Fe3O4. J. Magn. Magn. Mater. 2009. 321. P. 840-842.
https://doi.org/10.1016/j.jmmm.2008.11.065
21. Fujikawa R., Baryshev A.V., Khanikaev A.B., Kim J., Uchida H., Inoue M. Enhancement of Faraday rotation in 3D/Bi:YIG/1D photonic heterostructures. J. Mater. Sci. Mater. Electron. 2009. 20. P. 493-497.
https://doi.org/10.1007/s10854-008-9689-y
22. Li J., Tang N., Li T., Luo J., Yao L. Highly sensitive sensors of fluid detection based on magneto-optical Tamm state. Sensors Actuators B. 2018. 265. P. 644-651.
https://doi.org/10.1016/j.snb.2018.02.056
23. Wu Y.H., Cheng F., Shen Y.C., Lu G.Q., Li L.L. One-way transmission through merging of magnetic defect state and optical Tamm states. Optik. 2016. 127. P. 3740-3744.
https://doi.org/10.1016/j.ijleo.2015.12.137
24. Khanikaev A.B., Baryshev A.V., Inoue M., Kivshar Y.S. One-way electromagnetic Tamm states in magnetophotonic structures. Appl. Phys. Lett. 2009. 95. P. 011101-1-011101-3.
https://doi.org/10.1063/1.3167356
25. Kollyukh O.G., Morozhenko V. Angular and spectral peculiarities of the coherent thermal radiation of the magneto-optical Fabry-Perot resonator in a magnetic field. J. Opt. A. 2009. 11. P. 085503-1-085503-6.
https://doi.org/10.1088/1464-4258/11/8/085503
26. Yariv A., Yuh P. Opticheskie volny v kristalah. Moskva, Mir, 1987. (in Russian)
27. Lancaster P. Theory of Matrices. New York, Academic Press, 1969.
28. Liptuga A.I., Morozhenko V.О. and Pipa V.I. 1D magnetophotonic crystals as controllable optical elements for the long-wave infrared. Збірник тез 5-ї міжнародної науково-технічної конференції "СЕМСT-5". 4-8 червня 2012, Одеса. P. 173.
29. Liptuga A.I., Morozhenko V.О., Pipa V.I. Thermal emission of one-dimensional magnetophotonic crystals. J. Opt. 2013. 15. P. 075104-1-075104-6.
https://doi.org/10.1088/2040-8978/15/7/075104
30. Liptuga A., Morozhenko V., Pipa V., Venger E., Kostiuk T. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity. J. Opt. Soc. Am. A, 2012. 29. P. 790-796.
https://doi.org/10.1364/JOSAA.29.000790
31. Madelung O. Semiconductors: Data Handbook. Berlin, Springer, 2004.
https://doi.org/10.1007/978-3-642-18865-7
32. Morozhenko V., Maslov V., Kachur N. Manifestation of the Faraday effect in non-polarized light under optical resonance conditions. Opt. Commun. 2018. 426. P. 423-426.
https://doi.org/10.1016/j.optcom.2018.05.062
33. Liptuga A.I., Morozhenko V.О., Pipa V.I. Transmission, Reflection and Thermal Radiation of a MagnetoOptical Fabry-Perot Resonator in Magnetic Field: Investigations and Applications. In: Infrared Radiation, V. Morozhenko (ed.). Croatia, InTech, 2012. P. 57-84.
https://doi.org/10.5772/37059
34. Kollyukh О.G., Liptuga A.I., Morozhenko V.О., Pipa V.I. Magnetic-field modulation of the spectrum of coherent thermal radiation of semiconductor layers. Phys. Rev. B. 2005. 71. P. 073306-1-073306-4.
https://doi.org/10.1103/PhysRevB.71.073306
35. Kollyukh О.G., Liptuga A.I., Morozhenko V.О., Pipa V.I. Effect of the optical characteristics of semiconductorre sonator structures on the amplitudes of their thermal radiation lines. Opt. Commun. 2006. 260. P. 607-613.
https://doi.org/10.1016/j.optcom.2005.11.008
36. B.J. Lee, C.J. Fu, Z.M. Zhang. Coherent thermal emission from one-dimensional photonic crystals. Appl. Phys. Lett. 2005. 87. P. 071904-1-071904-3.
https://doi.org/10.1063/1.2010613
37. Morozhenko V.O. Eksperimentalne pidtverdzhennya aksialnoyi simetriyi teplovogo viprominyuvannya 1D rezonatornoyi strukturi. Tezi dopovidej VIII Ukrayinskoyi naukovoyi konferenciyi z fiziki napivprovidnikiv, 2-4 zhovtnya 2018, Uzhgorod. S. 241-242. (in Ukrainian)
38. Ishanin G.G., Pankov E.D., Adreev A.L., Polshikov G.V. Istochniki i priemniki izlucheniya. Sankt-Peterburg, Politehnika, 1991. (in Russian)
39. Kislij V.P., Liptuga A.I., Morozhenko V.A., Pipa V.J. Viznachennya kuta Faradeya v napivprovidnikovih ploskoparalelnih sharah ta strukturah. Tezi dopovidej V Ukrayinskoyi naukovoyi konferenciyi z fiziki napivprovidnikiv UNKFN-5, 9-15 zhovtnya 2011, Uzhgorod. C. 262-263. (in Ukrainian)
40. Cardona M. Electron Effective Masses of InAs and GaAs as a Function of Temperature and Doping. Phys. Rev. 1961. 121. P. 752-758.
https://doi.org/10.1103/PhysRev.121.752
41. Morozhenko V. Magneto-Optical Cavity-Type Resonators as Controllable Narrow-Band Sources of Infrared Radiation. Am. J. Modern Phys. and Appl. 2018. 5, No 4. P. 77-81.
42. Kislij V.P., Liptuga A.I., Maslov V.P, Morozhenko V.O. Vuzkosmugove dzherelo infrachervonogo viprominyuvannya iz kerovanoyu spektralnoyu harakteristikoyu. Patent Ukrayini na vinahid № 102615, MPK: H01L 33/04, H01L 27/15, B82Y 20/00; byul. № 14/2013. (in Ukrainian)
43. Maslov V.P., Morozhenko V.O. Kerovane vuzkosmugove dzherelo infrachervonogo viprominyuvannya. Patent Ukrayini na vinahid №118467, MPK: H01L 31/09, H01L 27/15, H01L 33/04, byul. № 2/2019. (in Ukrainian)
44. Maslov V.P., Morozhenko V.O. Infrachervonij kerovanij test-ob'yekt z vuzkosmugovim spektrom viprominyuvannya. Patent Ukrayini na vinahid № 117955, MPK: G01M 11/02, G01J 1/00, F41G 3/32; byul. № 20/2018. (in Ukrainian)