1. Fershal M.V. Analitychni sensorni systemy: navchalnyi posibnyk. Uzhhorod: Vyd-vo UzhNU «Hoverla». 2022. 220 s.
2. Muzyka K., Rozhytskyi M. Syntetychni antymelamin-retseptory na bazi molekuliarno impryntovanykh polimeriv dlia fermentnoho psevdoimunoanalizu. Sensorna elektronika ta mikrosystemni tekhnolohii. 2015. 12, №2. S.48-56.
3. Dorozhynskyi H. V., Maslov V. P., Ushenin Yu. V. Sensorni prylady na osnovi poverkhnevoho plazmonnoho rezonansu: Monohrafiia. K. NTUU «KPI». 2016. S.264.
4. Homola J., Yee S. and Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B. 1999. 54. P.3-15.
https://doi.org/10.1016/S0925-4005(98)00321-9
5. Voitovych Y. D. Sensory na osnove plazmonnoho rezonansa: pryntsypy, tekhnolohyy, prymenenyia. K.: Stal. 2011.
6. Hsu S.-H., Lin Y.-Y., Lu S.-H., Tsai I-F., Lu Y.-T., Ho H.-T. Mycobacteriumtuberculosis DNA Detection Using Surface Plasmon Resonance Modulatedby Telecommunication Wavelength. Sensors. 2014. 14. P. 458-467.
https://doi.org/10.3390/s140100458
7. Dorozinsky G.V., Liptuga A.I., Gordienko V.I., Maslov V.P, Pidgornyi V.V. Diagnostics of motoroil quality by using the device based on surface plasmon resonance phenomenon. Scholars Journal of Engineering and Technology. 2015. 3. P.372-374.
8. Aubin J., Ferrando M., Jiricny V. Current methods for characterising mixing and flow in microchannels. Chemical Engineering Science. 2010. 65, № 6. P. 2065-2093.
https://doi.org/10.1016/j.ces.2009.12.001
9. Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality. Springer. 2009. 533 p.
10. Kutia V. M. Analiz metodiv i zasobiv kontroliu dyspersnosti emulsii. Visnyk inzhenernoi akademii Ukrainy. 2013. № 3-4. S. 242-247.
11. Wiener O. Abhanl. math-phys. Kl. Sachs. Wiss. 1912. 32. P.509.
12. Garnett J.M. Colours in metal glasses, in metallic films, and in metallic solutions. Philosophical Transactions of the Royal Society of London. Series A. Containing Papers of a Mathematical or Physical Character. 1905. 76, № 511. P. 237 - 288.
https://doi.org/10.1098/rspa.1905.0039
13. Bruggeman V.D. Berechnung verschiedener physikalischer Кonstanten von heterogenen Substanzen, Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik. 1935. 416, №7. P. 636 - 664.
https://doi.org/10.1002/andp.19354160705
14. Azzam R. M. A., Bashara N. M. Ellipsometry and Polarized Light. Amsterdam: North-Holland. 1987. 583 p.
https://doi.org/10.1016/S0003-2670(00)82849-4
15. Dorozinska H.V., Dorozinsky G.V., Maslov V.P. Promising method for determining the concentration of nano-sized diamond powders in water suspensions. Functional Materials Journal. 2018. 25, №1. Р.158-164. DOI:https://doi.org/10.15407/fm25.01.1.
https://doi.org/10.15407/fm25.01.158
16. Yanase Y., Suzuki H., Tsutsui T., Hiragun T., Kameyoshi Y., Hide M. The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosensors and Bioelectronics. 2007. 22. P. 1081-1086.
https://doi.org/10.1016/j.bios.2006.03.011
17. Baumgarten S., Robelek R. Surface plasmon resonance (SPR) sensors for the rapid, sensitive detection of the cellular response to osmotic stress Sensors and Actuators B. 2011. 156. P.798- 804.
https://doi.org/10.1016/j.snb.2011.02.041
18. Hansson K.M., Johansen K., Wettero J., et al. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosens.Bioelectron. 2007. 23. P. 261-268.
https://doi.org/10.1016/j.bios.2007.04.009
19. Quinn J. G., O'Kennedy R., Smyth M., Moulds J, Frame T. Detection of blood group antigens utilising immibilized antibodies and sufrace plasmon resonance. Journal of Immunological Methods. 1997. 206, №1-2. P. 87-96.
https://doi.org/10.1016/S0022-1759(97)00092-6
20. Gridina N., Dorozinsky G., Khristosenko R., Maslov V., Samoylov A., Ushenin Yu., Shirshov Yu. Surface plasmon resonance biosensor. Sensors & Transducers Journal. 2013.149, №2. P.60-68.
21. Shirshov Yu.M., Kostyukevych K.V., Khistosenko R.V., Gridina N.Ya., Kostyukevych S.A., Samoylov A.V., Ushenin Yu.V. Optical control of the interface between gold surface and blood cell samples. Optoelectron. Semicond. Tech. 2021. 56. P. 134-155.
https://doi.org/10.15407/iopt.2021.56.134
22. Jaaskelainen A. J., Peiponen K.-E., Raty J. A., Dairy J. On Reflectometric Measurement of a Refractive Index of Milk. Journal of Dairy Science. 2001. 84, №1. P. 38-43.
https://doi.org/10.3168/jds.S0022-0302(01)74449-9
23. Vikinge T. P., Hansson K. M., Benesch J, Johansen K, Ranby M, Lindahl T. L. Blood plasma coagulation studied by surface plasmon resonance. J Biomed Optics. 2000. 5. P. 51-56.
https://doi.org/10.1117/1.429968
24. Mazumdar S. D., Barlen B., Kämpfer P., Keusgena M. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosensors and Bioelectronics. 2010. 25. P. 967-971.
https://doi.org/10.1016/j.bios.2009.04.002
25. Robelek R., Wegener J. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosensors and Bioelectronics. 2010. 25. P. 1221-1224.
https://doi.org/10.1016/j.bios.2009.09.016
26. Kryzhak L. M., Kalinina H. P. Problemy identyfikatsii ta vyiavlennia falsyfikatsii molochnykh produktiv. IKh Mizhnarodna naukovo-praktychna internet-konferentsiia. Poltava. Zbirnyk tez. 2022. S. 52-55.
27. Ingelfinger J.R. Melamine and the global implications of food contamination. N. Engl. J. Med. 359, №26. 2008. P.2745-2748.
https://doi.org/10.1056/NEJMp0808410
28. Brown C., Jeong K.S., Poppenga R.H. [et al.]. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. Journal of Veterinary Diagnostic Investigation. 2007. №19. P. 525-531.
https://doi.org/10.1177/104063870701900510
29. Sharma S., Paliwal A., Bassi M., Tomar M., Gupta V., Gulati S. Investigation of Adulteration in Milk using Surface Plasmon Resonance. ECS Journal of Solid State Science and Technology. 2021. 10,9. P. 091004.
https://doi.org/10.1149/2162-8777/ac1f71
30. Wu S., Qian L., Huang L. et al. A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins. Nano-Micro Lett. 2018. 10, №52. DOI: https://doi.org/10.1007/s40820-018-0204-6.
https://doi.org/10.1007/s40820-018-0204-6
31. Wu H., Li H., Chua F.Z., Li S.F. Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor. Sensors Actuators B Chem. 2013. 178. Р. 541-546, 10.1016/j.snb.2012.12.089.
https://doi.org/10.1016/j.snb.2012.12.089
32. Dursun A. D., Borsa B. A., Bayramoglu G., Arica M. Y., Ozalp V. C. Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta. 2022. 239. P. 123074.
https://doi.org/10.1016/j.talanta.2021.123074
33. Qu L., Bai J., Peng Y. et al. Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene. Food Anal. Methods. 2021. 14. P. 54-65. DOI: https://doi.org/10.1007/s12161-020-01852-x.
https://doi.org/10.1007/s12161-020-01852-x
34. Rebe Raz S., Bremer M.G., Haasnoot W., Norde W. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Anal Chem. 2009. 81, №18. P.7743-9. DOI: 10.1021/ac901230v.
https://doi.org/10.1021/ac901230v
35. Klestova Z. S., Voronina A. K., Yushchenko A. Y., et al. Surface plasmon resonance method for detection chicken infectious bronchitis coronavirus. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical P.
36. Kurç Ö., Türkmen D. Molecularly Imprinted Polymers Based Surface Plasmon Resonance Sensor for Sulfamethoxazole Detection. Photonic Sens. 2022. 12. P. 220417. DOI: https://doi.org/10.1007/s13320-022-0658-5.
https://doi.org/10.1007/s13320-022-0658-5
37. Altintas Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci Rep. 2018. 8. P. 11222. DOI: https://doi.org/10.1038/s41598-018-29585-2.
https://doi.org/10.1038/s41598-018-29585-2
38. Gaudin V., Maris P. Development of a Biosensor-based Immunoassay for Screening of Chloramphenicol Residues in Milk, Food and Agricultural Immunology. 2001. 13, №2. P.77-86. DOI: 10.1080/09540100120055648.
https://doi.org/10.1080/09540100120055648
39. Fernandez F., Hegnerova K., Piliarik M., et al. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosensors & Bioelectronics. 2010. 26, №4. P. 1231-1238. DOI: 10.1016/j.bios.
https://doi.org/10.1016/j.bios.2010.06.012
40. Gustavsson E, Degelaen J, Bjurling P, Sternesjö A. Determination of beta-lactams in milk using a surface plasmon resonance-based biosensor. J Agric Food Chem. 2004. 52, №10. Р. 2791-6. DOI: 10.1021/jf0344284. .
https://doi.org/10.1021/jf0344284
41. Сelik O., Saylan Y., Göktürk I., Yılmaz F., Denizli A. A surface plasmon resonance sensor with synthetic receptors decorated on graphene oxide for selective detection of benzylpenicillin. Talanta. 2022. 253. DOI: https://doi.org/10.1016/j.talanta.2022.123939.
https://doi.org/10.1016/j.talanta.2022.123939
42. Pennacchio A., Varriale A., Esposito M.G., Scala A., Marzullo V.M., Staiano M., D'Auria S. A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG) in Milk. PLoS One. 2015. 10, №7. P: e0132396. DOI: 10.1371/journal.pone.0132396.
https://doi.org/10.1371/journal.pone.0132396
43. Prosa M., Bolognesi M., Fornasari L., Grasso G., Lopez-Sanchez L., Marabelli F., Toffanin S. Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors. Nanomaterials. 2020. 10. P. 480.
https://doi.org/10.3390/nano10030480