https://doi.org/10.15407/iopt.2023.58.092
Optoelectron. Semicond. Tech. 58, 92-101 (2023)
A.M. Minyaylo, I.V. Pekur, V.I. Kornaga, D.V. Pekur, V.M. Sorokin
WAYS OF CONSTRUCTION ENERGY EFFICIENT LED LIGHT SYSTEMS FOR
PHYTOLIGHTING
Lighting of plant crops (phytolighting) realized on the basis of LEDs has revolutionized the field of indoor
agriculture and cultivation of crops in closed controlled environments due to the possibility of optimizing the spectral
composition and high energy efficiency. The use of specialised quasi-monochromatic radiation allows the activation of
specific photomorphogenic, biochemical or physiological responses in plants, while LED radiation of a specific spectral
composition (e.g. UV radiation) allows the control of plant pests and diseases. The literature review indicates that there
is a species- and cultivar-specific response of plants to light radiation of a particular spectral composition and that this
response varies with the stage of plant development, the intensity of illumination, the duration of plant development and
specific interactions with the environment. Based on the developed recommendations for the spectral composition of
radiation intended for plant illumination, the requirements for the spectral composition of light for phytolighting
systems were determined. The efficiency of LEDs with different spectral compositions for plant illumination and the
most energy efficient LEDs for use in phytolighting systems were determined. Special software was developed to
determine the photon radiation efficiency and it was determined for a wide range of LED light sources. The LEDs
studied had photon efficiencies ranging from 3.78 μmol/J (quasi-monochromatic blue LEDs) to 5.46 μmol/J (quasi-
monochromatic red LEDs). White LEDs, depending on their colour rendering index, had a photon spectral efficiency in
the range of 4.62-4.79 μmol/J. Some modern white LEDs with a high colour rendering index have a photon spectral
efficiency close to that of phytolighting based on special quasi-monochromatic LEDs, but their efficiency, taking into
account the weighting factor of the use of photons of different wavelengths for photosynthesis, is much lower.
Keywords: LED, phytolighting, light spectral composition, colour rendering index, photon efficiency,
luminous flux utilisation factor.
References
1. Park J.-H., Sudarshan T.S. Surface engineering series. Volume 2. Chemical vapour deposition-Ohio. ASM International, Materials Park. 2001. 481 p.
2. Chemical vapour deposition: precursors, processes and applications. Edited by A. C. Jones and M. L. Hitchman (Eds.). - Cambridge, UK: Royal Society of Chemistry, 2009. 582 p.
3. Pierson H. O. Handbook of Chemical Vapor Deposition (CVD). Principles, technology, and applications. Second edition H. O. Pierson. United States of America by Noyes Publications. William Andrew Publishing, LLC Norwich, New York, U.S.A. 1999. 506 p.
4. Wahl G., Davies P.B., Bunshah R.F. et al. Ullmann's encyclopedia of industrial chemistry. Thin films. Wiley-VCH Verlag GmbH and Co. KGaA Weinhein. 2012. 36. P. 519-587.
5. Bendeddouche A., Berjoan R., Beche E., Merle-Mejean T., Schamm S. et al. Structural characterization of amorphous SiCxNy chemical vapor deposited coatings. J. Appl. Phys. 1997. 81. P. 6147-6154.
https://doi.org/10.1063/1.364396
6. Hirai T., Goto T Preparation of amorphous Si3N4-C plate by chemical vapour deposition. Journal of Materials Science. 1981. 16. P. 17-23.
https://doi.org/10.1007/BF00552054
7. Awad Y., El Khakani M.A., Aktik C. et al. Structural and mechanical properties of amorphous silicon carbonitride films prepared by vapor-transport chemical vapor deposition. Surf. Coat. Tech. 2009. 204. P. 539-545.
https://doi.org/10.1016/j.surfcoat.2009.08.032
8. Bendeddouche A., Berjoan R., Beche E., Hillel R. Hardness and stiffness of amorphous SiCxNy chemical vapor deposited coatings. Surf. Coat. Tech. 1999. 111. P. 184-190.
https://doi.org/10.1016/S0257-8972(98)00733-6
9. Fajner N.I., Kosinova M.L., Rumyancev Yu.M. Tonkie plenki karbonitridov kremniya i bora: sintez, issledovanie sostava i struktury. Ros. him. zh. (Zh. Ros. him. ob-va im. D.I. Mendeleeva). 2001. T. XLV, № 3. S. 101-108.
10. Zhang W., Zhang K. and Wang B. Influence of temperature on the properties of SiCxNy:H films prepared by plasma-enhanced chemical vapour deposition. Mat. Sci. Engn. 1994. B26. P.133-140.
https://doi.org/10.1016/0921-5107(94)90161-9
11. Swain B. P., Hwang N. M. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition. Appl. Surf. Sci. 2008. 254. P. 5319-5322.
https://doi.org/10.1016/j.apsusc.2008.02.077
12. Zhang D.H., Gao U.Y., Wei J., Mo Z.Q. Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD. Thin Solid Films. 2000. 377-378. P. 607-610.
https://doi.org/10.1016/S0040-6090(00)01277-3
13. Cheng W., Jiang J., hang Y. Z. et al. Effect of the deposition conditions on the morphology and bonding structure of SiCN films. Mater. Chem. Phys. 2004. 85. P. 370-376.
https://doi.org/10.1016/j.matchemphys.2004.01.015
14. Chen C.W., Huang C.C., Lin Y.Y. et al. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film. Diamond Relat. Mater. 2005. 14. P. 1126-1130.
https://doi.org/10.1016/j.diamond.2004.10.045
15. Matsutani T., Yamasaki K., Tsutsui H. et al. Matsutani T., Yamasaki K., Tsutsui H. et al. Amorphous SiCN diaphragm for transmission electron microscope with environmental-cell fabricated by plasma-enhanced chemical vapor deposition. Vacuum. 2013. 88. P. 83-87.
https://doi.org/10.1016/j.vacuum.2012.03.033
16. Izumi A., Oda K. Deposition of SiCN films using organic liquid materials by HWCVD method. Thin Solid Films. 2006. 501. P. 195-197.
https://doi.org/10.1016/j.tsf.2005.07.210
17. Afanasyev-Charkin I.V. and Nastasi M. Hard Si-N-C coatings produced by pulsed glow discharge deposition. Surf. Coat. Technol. 2004. 186. P. 108-111.
https://doi.org/10.1016/j.surfcoat.2004.04.005
18. Du X.-W., Sun Y. Fu, J. and Yao P. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature. J. Appl. Phys. 2006. 99. P. 093503 (4 pp.).
https://doi.org/10.1063/1.2194208
19. Besling W.F.A., Goossens A., Meester B. and Schoonman J. Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J. Appl. Phys. 1998. 83. P. 544-553.
https://doi.org/10.1063/1.366669
20. Xie E., Ma Z., Lin H. et al. Preparation and characterization of SiCN films. Optical Materials. 2003. 23. P. 151-156.
https://doi.org/10.1016/S0925-3467(03)00077-6
21. Peng Y., Zhou J., Zhang Z. et al. Influence of radiofrequency power on compositional, structural and optical properties of amorphous silicon carbonitride films. Appl. Surf. Sci. 2010. 256. P. 2189-2192.
https://doi.org/10.1016/j.apsusc.2009.09.071
22. Shi Z., Wang Y., Du C. et al. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering. Appl. Surf. Sci. 2011. 258. P. 1328-1336.
https://doi.org/10.1016/j.apsusc.2011.09.036
23. Pusch C., Hoche H., Berger C. et al. Influence of the PVD sputtering method on structural characteristics of SiCN-coatings - Comparison of RF, DC and HiPIMS sputtering and target configurations. Surf. Coat. Tech. 2011. 205. P. S119-S123.
https://doi.org/10.1016/j.surfcoat.2011.04.095
24. Shi Z., Wang Y., Huang N. et al. Microstructure, mechanical properties and wetting behavior of F: Si-C-N films as bio-mechanical coating grown by DC unbalanced magnetron sputtering. J. Allous Compouna. 2013. 552. P. 111-118.
https://doi.org/10.1016/j.jallcom.2012.08.012
25. Wu J.-J., Wu C.-T., Liao Y.-C. et al. Deposition of silicon carbon nitride films by ion beam sputtering. Thin Solid Films. 1999. 355-356. P. 417-422.
https://doi.org/10.1016/S0040-6090(99)00458-7
26. Carter G., He Z. and Colligon J.S. Ion-assisted deposition of C-N and Si-C-N films. Thin Solid Films. 1996. 283. P. 90-96.
https://doi.org/10.1016/0040-6090(96)08556-2
27. Park N.-M., Kim S.H. and Sung G.Y. Band gap engineering of SiCN film grown by pulsed laser deposition. J. Appl. Phys. 2003. 94. P. 2725-2728.
https://doi.org/10.1063/1.1594267
28. Yamamoto K., Koga Y. and Fujiwara S. XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diam. Relat. Mater. 2001. 10. P. 1921-1926.
https://doi.org/10.1016/S0925-9635(01)00422-8
29. Lehmann G., Hess P., Wu J.-J. et al. Structure and elastic properties of amorphous silicon carbon nitride films. Phys. Rev. B. 2001. 64. P.165305 (10 pp.).
https://doi.org/10.1103/PhysRevB.64.165305
30. Mazurenko Ye.A., Gerasimchuk A.I., Ovsyannikov V.P. Himichne osadzhennya z gazovoyi fazi, sintez funkcionalnih materialiv (oglyad). Fizika i himiya tverdogo tila. 2001. 2, № 3. S. 339 - 349.
31. Timoshenko N.I., Rebrov A.K. Kak poluchit nanostrukturnye plenki i pokrytiya iz gazovoj fazy. Elektronnyj resurs: nauchno-populyarnye materialy: obzor. Rezhim dostupa: http://www.itp.nsc.ru/articles/Populjarno_o_nanotehnologijah.html.
32. Bullot J. and Schmidt M. P. Physics of amorphous silicon-carbon alloys. Phys. Stat. Sol. B. 1987. 143. P. 345 - 418.
https://doi.org/10.1002/pssb.2221430202
33. Peter S., Gunther M., Berg S. et al. Mid-frequency PECVD of a-SiCN:H films and their structural, mechanical and electrical properties. Vacuum. 2013. 90. P. 155-159.
https://doi.org/10.1016/j.vacuum.2012.04.001
34. Pierson H.O. Handbook of chemical vapor deposition. Noyes Publications. Park Ridge. 1992. 125 p.
https://doi.org/10.1016/B978-0-8155-1300-1.50008-8
35. Tehnologiya tonkih plenok. Spravochnik. Pod red. L. Majssela, R. Glenga. Nyu-Jork. 1970. Per. s angl. Pod red. M.I. Elinsona, G.G. Smolko. T. 1. M.: Sov. Radio. 1977. 664 s.
36. Azarenkov N.A., Beresnev V.M., Pogrebnyak A.D. i dr. Nanomaterialy, nanopokrytiya, nanotehnologii. Uchebnoe posobie. Harkov.:HNU im. V.N. Karazina. 2009. 209 s.
37. Chen Z., Lin H., Zhou J. et al. IR studies of SiCN films deposited by RF sputtering method. J. Alloy Compd. 2009. 487. P. 531-536.
https://doi.org/10.1016/j.jallcom.2009.08.009
38. Kurnosov A.I. Tehnologiya proizvodstva poluprovodnikovyh priborov i integralnyh mikroshem. Ucheb. posobie dlya vuzov. 3-e izd., pererab. i dop. -Moskva: Vyssh. shk. 1986. 368 s.
39. Smirnov V.I. Fiziko-himicheskie osnovy tehnologii elektronnyh sredstv. Uchebnoe posobie. Ulyanovsk: UlGTU. 2005. 112 s.
40. Xiao X.-S., Li Ya.-W., Song L.-X. et al. Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar. Appl. Surf. Sci. 2000. 156. P. 155-160.
https://doi.org/10.1016/S0169-4332(99)00493-6
41. Peng Y., Zhou J., Zhao B. et al. Effect of annealing temperature and composition on photoluminescence properties of magnetron sputtered SiCN films. Thin Solid Films. 2011. 519. P. 2083-2086.
https://doi.org/10.1016/j.tsf.2010.10.058
42. Kelly P.J., Arnell R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum. 2000. 56. P. 159-172.
https://doi.org/10.1016/S0042-207X(99)00189-X
43. Borisov S.F. Mezhfaznaya granica gaz-tverdoe telo: struktura, modeli, metody issledovaniya. Uchebnoe posobie. Ekaterinburg. 2001. 100 s.
44. Shayapov V.R., Rumyantsev Yu.M., Dzyuba A.A. et al. Mechanical stresses in silicon carbonitride films obtained by PECVD from hexamethyldisilazane. Appl. Surf. Sci. 2013. 265. P. 385-388.
https://doi.org/10.1016/j.apsusc.2012.11.017
45. Peng Y., Zhou J., Zhao B. et al. Structural and optical properties of the SiCN thin films prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2011. 257. P. 4010-4013.
https://doi.org/10.1016/j.apsusc.2010.11.166
46. Du X.-W., Fu Y., Sun J., Yao P. The effect of annealing atmosphere on photoluminescent properties of SiCN films. Surf. Coat. Technol. 2007. 201. P. 5404-5407.
https://doi.org/10.1016/j.surfcoat.2006.07.046
47. Bendeddouche A., Berjoan R., Beche E. et al. SiCN Amorphous Materials Chemical Vapour Deposited Using the Si(CH3)4-NH3-H2 System. Journal de Physique IV Colloque C5, supplement au Journal de Physique II. 1995. 5. P. C5-793-C5-800.
https://doi.org/10.1051/jphyscol:1995594
48. Bulou S., Le Brizoual L., Miska P. et al. Structural and optical properties of a-SiCN thin film synthesised in a microwave plasma at constant temperature and different flow of CH4 added to HMDSN/ N2/Ar mixture. Surf. Coat. Technol. 2011. 205. P. S214-S217.
https://doi.org/10.1016/j.surfcoat.2011.02.014
49. Gong Z., Wang E.G., Xu G.C., Chen Y. Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films. Thin Solid Films. 1999. 348. P. 114-121.
https://doi.org/10.1016/S0040-6090(99)00020-6
50. Ng V.M., Xu M., Huang S.Y. et al. Assembly and photoluminescence of SiCN nanoparticles. Thin Solid Films. 2006. 506-507. P. 283-287.
https://doi.org/10.1016/j.tsf.2005.08.075
51. Sarangi D., Sanjines R., Karimi A. Effect of silicon doping on the mechanical and opticals proporties of carbon nitride thin films. Thin Solid Films. 2004. 447-448. P. 217-222.
https://doi.org/10.1016/S0040-6090(03)01054-X
52. Majumdar A., Das G., Patel N. et al. Microstructural and chemical evolution of CH3-incorporated (low-k) SiCO(H) films prepared by dielectric barrier discharge plasma. J. Electrochem. Soc. 2008. 155(1). P. D22-D26.
https://doi.org/10.1149/1.2801345
53. Yan X.B., Tay B.K., Chen G. and Yang S.R. Synthesis of silicon carbide nitride nanocomposite films by simple electrochemical method. Electrochem. Commun. 2006. 8. P. 737-740.
https://doi.org/10.1016/j.elecom.2006.03.005
54. Wagner N.J., Cordill J., Zajickova L. et al. Thermal plasma chemical vapor deposition of superhard nanostructured Si-C-N coatings. Mater. Res. Soc. Symp. Proc. 2005. 875. P. 69-74.
https://doi.org/10.1557/PROC-880-BB2.10/O3.10
55. Limmanee A., Otsubo M., Sugiura T.et al. Effect of thermal annealing on the properties of a-SiCN:H films by hot wire chemical vapor deposition using hexamethyldisilazane. Thin Solid Films. 2008. 516. P.652-655.
https://doi.org/10.1016/j.tsf.2007.06.217
56. Ferreira I., Fortunato E., Vilarinho P. et al. Hydrogenated silicon carbon nitride films obtained by HWCVD,PA-HWCVD and PECVD techniques. J. Non-Cryst. Solids. 2006. 352. P. 1361-1366.
https://doi.org/10.1016/j.jnoncrysol.2006.02.025
57. Jedrzejowski P., Cizek J., Amassian A. et al. Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films. 2004. 447-448. P. 201-207.
https://doi.org/10.1016/S0040-6090(03)01057-5
58. Wu X.C., Cai R.Q., Yan P.X. et al. SiCN thin film prepared at room temperature by RF reactive sputtering. Appl. Surf. Sci. 2002. 185. P. 262-266.
https://doi.org/10.1016/S0169-4332(01)00820-0
59. Gomez F. J., Prieto P., Elizalde E. and Piqueras J. SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition. Appl. Phys. Lett. 1996. 69. P. 773-775.
https://doi.org/10.1063/1.117887
60. Li X., Yang S. and Wu X. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma. J. Univ. Sci. Technol. B. 2006. 13. P. 272-276.
https://doi.org/10.1016/S1005-8850(06)60057-1
61. Chen L. C., Chen C. K., Wei S. L. et al. Crystalline silicon carbon nitride: A wide band gap semiconductor. Appl. Phys. Lett. 1998. 72. P. 2463-2465.
https://doi.org/10.1063/1.121383
62. Awad Y., El Khakani M. A., Scarlete M. et al. Structural analysis of silicon carbon nitride films prepared by vapor transport-chemical vapor deposition. J. Appl. Phys. 2010. 107. P. 033517 (6 pp.).
https://doi.org/10.1063/1.3289732
63. Swatowska B., Stapinski T. Optical and structural characterization of silicon - carbon - nitride thin films for optoelectronic. Phys. Stat. Solidi C. 2010. 7, No 3-4. P. 758-761.
https://doi.org/10.1002/pssc.200982672
64. Chen C.W., Huang C.C., Y.Y. Lin Y.Y. et al. Optical properties and photoconductivity of amorphous silicon carbon nitride thin films and its application for UV detection. Diam. Relat. Mater. 2005. 14. P.1010-1013.
https://doi.org/10.1016/j.diamond.2004.11.027
65. Huran J., Valovi A., Kuer M. et al. Hydrogenated silicon carbon nitride films prepared by PECVD tehnology: properties. Journal of Electrical Engineering. 2012. 63. P. 333-335.
https://doi.org/10.2478/v10187-012-0049-z
66. Perny M., Saly V., Vary M., Huran J. Electrical and structural properties of amorphous silicon carbide and its application for photovoltaic heterostructures. Electroenergetica. 2011. 4, No 3. P. 17-19.
67. Chen C.W., Chang T.C., Liu P.T. et al. Investigation of the electrical properties and reliability of amorphous SICN. Thin Solid films. 2004. 447-448. P. 632-637.
https://doi.org/10.1016/j.tsf.2003.09.053
68. Liu Yu., Zhang X., Chen C. et al. The photoluminescence of SiCN thin films prepared by C+ implantation into a-SiNx:H. Thin Solid Films. 2010. 518. P. 4363-4366.
https://doi.org/10.1016/j.tsf.2010.01.028
69. Wu Z.F., Hong B., Cheng K. et al. Structure and photoluminescence properties of SiCN films grown by dual ion beam reactive sputtering deposition. Vacuum. 2014. 101. P. 205-207.
https://doi.org/10.1016/j.vacuum.2013.08.016
70. Ermakova E., Rumyantsev Yu., Shugurov et al. PECVD synthesis, optical and mechanical properties of silicon carbon nitride films. Appl. Surf. Sci. 2015. 339. P. 102-108.
https://doi.org/10.1016/j.apsusc.2015.02.155
71. Hamakava J. Amorfnye poluprovodniki i pribory na ih osnove. [Per. s angl. pod red. S. S. Gorelika]. M.: Metallurgiya. 1986. 378 s.
72. Fizika gidrogenizirovannogo amorfnogo kremniya: Struktura, prigotovlenie i pribory. [Per s angl.]. Pod red. Dzh. Dzhounopulosa, Dzh. Lyukovski. T.1. M.: Mir. 1987. 363 c.
73. Meden A., Sho M. Fizika i primenenie amorfnyh poluprovodnikov. M.: Mir. 1991. 670 c.
74. Lo H.C., Wu J.J., Wen C.Y. Bonding characterization and nano-indentation study of the amorphous SiC N films with and without hydrogen x y incorporation. Diam. Relat. Mater. 2001. 10. P. 1916-1920.
https://doi.org/10.1016/S0925-9635(01)00421-6
75. Vlek J., Kormunda M., Cizek J., Perina V., Zemek J. Influence of nitrogen-argon gas mixtures on reactive magnetron sputtering of hard Si-C-N films. Surf. Coat. Technol. 2002. 160. P. 74-81.
https://doi.org/10.1016/S0257-8972(02)00328-6
76. Dressler W., Riedel R. Progress in silicon-based non-oxide structural ceramics. Int. J. Refract. Metals and Hard Mater. 1997. 15. P.13-47.
https://doi.org/10.1016/S0263-4368(96)00046-7
77. Shengyang FU, Min ZHU, Yufang ZHU, Organosilicon polymer-derived ceramics: An overview. J. Advanced Ceram. 2019. 8. P. 457-478.
https://doi.org/10.1007/s40145-019-0335-3
78. Bhattacharyya A. Nanocomposite Si-C-N Coatings. LAP LAMBERT Academic Publishing. 2018. 68 p.
79. Perny M., Saly V., Vary M., Huran J. Electrical and Structural Properties of Amorphous Silicon Carbide and Its Application for Photovoltaic Heterostructures. Elektroenergetika. 2011. 4. 17-19.
80. Chen C.W., Chang T.C., Liu P.T. et al. Investigation of electrical properties and reliability of amorphous SiCN. Thin Solid Films. 2004. 447-448. P. 632-637.
https://doi.org/10.1016/j.tsf.2003.09.053
81. Haluschka C., Engel C. and Riedl R. Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties. J. Eur. Ceram. Soc. 2000. 20. P. 1365-1374.
https://doi.org/10.1016/S0955-2219(00)00009-1
82. Ramakrishnan P.A., Wang Y.T., Balzar D. et al. Silicoboron-carbonitride ceramics: A class of high-temperature dopable electronic material. Appl. Phys. Lett. 2001. 78. P. 3076-3078.
https://doi.org/10.1063/1.1370540
83. Huran J., Valovic A., Kucera M. et al. Hydrogenated amorphous silicon carbon nitride films prepared by PECVD technology: properties. J. Electrical Engineering. 2012. 63. P. 333-335.
https://doi.org/10.2478/v10187-012-0049-z
84. Zhang D.H., Gao U. Y., Wei J., Mo Z.Q. Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD. Thin Solid Films. 2000. 377-378. P. 607-610.
https://doi.org/10.1016/S0040-6090(00)01277-3
85. Kobayashi K., Yokoyama H., Endoh M. Leakage current and paramagnetic defects in SiCN dielectrics for copper diffusion barriers. Appl. Surf. Sci. 2008. 254. P. 6222-6225.
https://doi.org/10.1016/j.apsusc.2008.02.144
86. Ivashchenko V.I., Kozak A.O., Porada O.K. et al. Characterization of SiCN thin films: Experimental and theoretical investigations. Thin Solid Films. 2014. 569. P. 57-63.
https://doi.org/10.1016/j.tsf.2014.08.027
87. Kozak A.O., Ivashchenko V.I., Porada O.K. et al. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: An effect of substrate bias. Mater. Sci. Semicond. Proc. 2018. 88. P. 65-72.
https://doi.org/10.1016/j.mssp.2018.07.023
88. Kozak A.O., Ivashchenko V.I., Porada O.K. et al. Optical properties of PECVD Si-C-N films. J. Nano-Electron. Phys. 2015. 7. P. 03040-1-03040-6.
89. Porada O.K., Manzhara V.S., A.O. Kozak A.O., Ivashchenko V.I. et al. Photoluminescence Properties of PECVD Si-C-N Films. J. Nano-Electron. Phys. 2017. 9. P. 02022-1-02022-6.
https://doi.org/10.21272/jnep.9(2).02022
90. Sukach A.V., Tetyorkin V.V., Tkachuk A.I. et al. Optoelectronic properties and carrier transport mechanisms in amorphous SiCN. J. Non.-Cryst. Solids. 2019. 523. P. 119603.
https://doi.org/10.1016/j.jnoncrysol.2019.119603
91. Lampert M.A., Mark P. Current Injection in Solids. Academic Press: New York. 1970.
92. Kao K.C., Hwang W. Electrical Transport in Solids. With Particular Reference to Organic Semiconductors. Oxford: Pergamon Press.1981.
93. Henderson H.T., Ashley K.L. Space-charge-limited current in neutron-irradiated silicon, with evidence of the complete Lampert triangle. Phys. Rev. 1969. 186. P. 811-815.
https://doi.org/10.1103/PhysRev.186.811
94. Nicolet M.-A. Unipolar space-charge-limited current in solids with nonuniform spacial distribution of shallow traps. J. Appl. Phys. 1966. 37. P. 4224-4235.
https://doi.org/10.1063/1.1708004
95. Sworakowski J., Pigon K. Trap distribution and space-charge limited currents in organic crystals. Anthracene. J. Phys. Chem. Solids. 1969. 30. P. 491-496.
https://doi.org/10.1016/0022-3697(69)90004-3
96. Sworakowski J. Space-charge-limited currents in solids with non-uniform spatial trap distribution. J. Appl. Phys. 1970. 41. P. 292-295.
https://doi.org/10.1063/1.1658336
97. Nicolai H.T., Mandoc M.M., Blom P.W.M. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution. Phys. Rev. B. 2011. 83. P.195204-1-195204-5.
https://doi.org/10.1103/PhysRevB.83.195204
98. Hwang W., Kao K.C. Studies of the theory of single and double injections in solids with a Gaussian trap distribution. Solid State Electron. 1976. 19. P. 1045-1047.
https://doi.org/10.1016/0038-1101(76)90191-X
99. Mark P., Helfrich W. Space-charge-limited currents in organic crystals. J. Appl. Phys. 1962. 33. P. 205-215.
https://doi.org/10.1063/1.1728487
100. Nespurek S., Smejtek P., Space-charge limited currents in insulators with the Gaussian distribution of traps. Czechoslov. J. Phys. 1972. 22. P. 160-175.
https://doi.org/10.1007/BF01709967
101. Fleissner A., Weise W., von Seggern H. Unipolar space-charge limited current through layers with a disparate concentration of shallow traps: Experiment and model. J. Appl. Phys. 2005. 97. P. 043701.
https://doi.org/10.1063/1.1840094
102. Dacuna J., Salleo A. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility. Phys. Rev. B. 2011. 84. P. 195209-1 -195209-9.
https://doi.org/10.1103/PhysRevB.84.195209
103. Bak G.W., Lipinski A., A. Space charge-limited currents in thin film solid dielectrics with non-uniform deep-trap distributions: numerical solutions. Thin Solid Films. 1994. 238. P. 290-294.
https://doi.org/10.1016/0040-6090(94)90069-8
104. Zhang W., Zhang K., Wang B. Influence of temperature on the properties of SiCxNy:H films prepared by plasma-enhanced chemical vapor deposition. Materials Science and Engineering. 1994. B26. P. 133-140.
https://doi.org/10.1016/0921-5107(94)90161-9
105. Lo H.C., Wu J.J., Wen C.Y. et al. Bonding characterization and nano-indentation study of the amorphous SiCxNy films with and without hydrogen incorporation. Diamond and Related Materials. 2001. 10. P.1916-1920.
https://doi.org/10.1016/S0925-9635(01)00421-6
106. Jung D.-C., Lim H.-G., Jee H-I. et.al. Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties. Surface and Coatings Technology. 2003. 171. P. 46-50.
https://doi.org/10.1016/S0257-8972(03)00234-2
107. Chang Wei-Yuan, Chang Chieh-Yu, Leu Jihperng. Optical properties of plasma-enhanced chemical vapor deposited SiCxNy films by using silazane precursors. Thin Solid Films. 2017. 636. P. 671-679.
https://doi.org/10.1016/j.tsf.2017.07.016
108. Bendeddouche A., Berjoan R., Beche E. et al. SiCN Amorphous Materials Chemical Vapour Deposited Using the Si(CH3)4-NH3-H2 System. J. de Phys. IV. 1995. C5. P.793-800.
https://doi.org/10.1051/jphyscol:1995594
109. Kobayashi K., Ide T. Photoinduced paramagnetic defects and negative charge in SiCN dielectrics for copper diffusion barriers. Thin Solid Films. 2010. 518. P. 3305-3309.
https://doi.org/10.1016/j.tsf.2009.09.083
110. Al Ahmed S. R., Kato K., Kobayashi K. Hole trapping characteristics of silicon carbonitride (SiCN)-based charge trapping memories evaluated by the constant-current carrier injection method. Mat. Sci. Semicond. Proc. 2017. P. 215-222.
https://doi.org/10.1016/j.mssp.2017.01.012
111. Lannoo M. The role of dangling bonds in the properties of surfaces and interfaces in semiconductors. Revue Phys. Appl. 1990. 25. P. 887-894.
https://doi.org/10.1051/rphysap:01990002509088700
112. Sukach A.V., Tetorkin V.V., Ivashenko V.I. ta in. Elektrichni ta fotoelektrichni vlastivosti geteroperehodiv a-SiCN/c-Si. Optoelektronika i poluprovodnikovaya tehnika. 2013. Vyp.48. S. 96 - 104.
А.М. Міняйло, І.В. Пекур, В.І. Корнага, Д.В. Пекур, В.М. Сорокін
ШЛЯХИ ПОБУДОВИ ЕНЕРГОЕФЕКТИВНИХ СВІТЛОДІОДНИХ
СИСТЕМ ФІТООСВІТЛЕННЯ
Освітлення рослинних культур (фітоосвітлення), реалізоване на основі світлодіодів, здійснило
революцію в галузі землеробства закритого ґрунту і при вирощуванні культур у закритих контрольованих
середовищах завдяки можливості оптимізації його спектрального складу та високій енергоефективності.
Застосування спеціалізованого квазімонохроматичного випромінювання джерел світла дозволяє активувати
специфічні фотоморфогенні, біохімічні або фізіологічні реакції рослин, а світлодіодне випромінювання
визначеного спектрального складу (наприклад, УФ-випромінювання) дозволяє боротися зі шкідниками та
хворобами рослин. Проведений літературний аналіз вказує на видо - та сортоспецифічну реакцію рослин на
світлове випромінювання визначеного спектрального складу і на її зміну в залежності від стадії розвитку
рослин, а також інтенсивності освітленості, тривалості розвитку рослин та специфічних взаємодій з
навколишнім середовищем. На основі розроблених рекомендацій до спектрального складу випромінювання,
призначеного для освітлення рослинних культур, було визначено вимоги до спектрального складу світла систем
фітоосвітлення. Визначено ефективність світлодіодів різного спектрального складу для освітлення рослин та
найбільш енергоефективні світлодіоди для використання в системах фітоосвітлення. В роботі було розроблено
спеціалізоване програмне забезпечення для визначення фотонної ефективності випромінювання та визначено її
для широкої номенклатури світлодіодних джерел світла. Досліджені світлодіоди мали фотонну ефективність в
діапазоні від 3,78 мкмоль/Дж (квазімонохроматичні сині світлодіоди) до 5,46 мкмоль/Дж (квазімонохроматичні
червоні світлодіоди). Білі світлодіоди в залежності від індексу кольоропередачі мали фотонну ефективність в
діапазоні 4,62-4,79 мкмоль/Дж. Деякі сучасні білі світлодіоди з високим індексом кольоропередачі мають
фотонну ефективність, наближену до фітоосвітлення, реалізованого на основі спеціалізованих
квазімонохроматичних світлодіодів, проте їхня ефективність з урахуванням вагового коефіцієнта використання
фотонів з різною довжиною хвилі для фотосинтезу значно нижча.
Ключові слова: світлодіод, фітоосвітлення, спектральний склад світла, індекс кольоропередачі,
фотонна ефективність, коефіцієнт використання світлового потоку.