https://doi.org/10.15407/iopt.2023.58.092

Optoelectron. Semicond. Tech. 58, 92-101 (2023)

A.M. Minyaylo, I.V. Pekur, V.I. Kornaga, D.V. Pekur, V.M. Sorokin


WAYS OF CONSTRUCTION ENERGY EFFICIENT LED LIGHT SYSTEMS FOR

PHYTOLIGHTING


Lighting of plant crops (phytolighting) realized on the basis of LEDs has revolutionized the field of indoor

agriculture and cultivation of crops in closed controlled environments due to the possibility of optimizing the spectral

composition and high energy efficiency. The use of specialised quasi-monochromatic radiation allows the activation of

specific photomorphogenic, biochemical or physiological responses in plants, while LED radiation of a specific spectral

composition (e.g. UV radiation) allows the control of plant pests and diseases. The literature review indicates that there

is a species- and cultivar-specific response of plants to light radiation of a particular spectral composition and that this

response varies with the stage of plant development, the intensity of illumination, the duration of plant development and

specific interactions with the environment. Based on the developed recommendations for the spectral composition of

radiation intended for plant illumination, the requirements for the spectral composition of light for phytolighting

systems were determined. The efficiency of LEDs with different spectral compositions for plant illumination and the

most energy efficient LEDs for use in phytolighting systems were determined. Special software was developed to

determine the photon radiation efficiency and it was determined for a wide range of LED light sources. The LEDs

studied had photon efficiencies ranging from 3.78 μmol/J (quasi-monochromatic blue LEDs) to 5.46 μmol/J (quasi-

monochromatic red LEDs). White LEDs, depending on their colour rendering index, had a photon spectral efficiency in

the range of 4.62-4.79 μmol/J. Some modern white LEDs with a high colour rendering index have a photon spectral

efficiency close to that of phytolighting based on special quasi-monochromatic LEDs, but their efficiency, taking into

account the weighting factor of the use of photons of different wavelengths for photosynthesis, is much lower.

Keywords: LED, phytolighting, light spectral composition, colour rendering index, photon efficiency,

luminous flux utilisation factor.

References

1. Park J.-H., Sudarshan T.S. Surface engineering series. Volume 2. Chemical vapour deposition-Ohio. ASM International, Materials Park. 2001. 481 p.

2. Chemical vapour deposition: precursors, processes and applications. Edited by A. C. Jones and M. L. Hitchman (Eds.). - Cambridge, UK: Royal Society of Chemistry, 2009. 582 p.

3. Pierson H. O. Handbook of Chemical Vapor Deposition (CVD). Principles, technology, and applications. Second edition H. O. Pierson. United States of America by Noyes Publications. William Andrew Publishing, LLC Norwich, New York, U.S.A. 1999. 506 p.

4. Wahl G., Davies P.B., Bunshah R.F. et al. Ullmann's encyclopedia of industrial chemistry. Thin films. Wiley-VCH Verlag GmbH and Co. KGaA Weinhein. 2012. 36. P. 519-587.

5. Bendeddouche A., Berjoan R., Beche E., Merle-Mejean T., Schamm S. et al. Structural characterization of amorphous SiCxNy chemical vapor deposited coatings. J. Appl. Phys. 1997. 81. P. 6147-6154.

https://doi.org/10.1063/1.364396

6. Hirai T., Goto T Preparation of amorphous Si3N4-C plate by chemical vapour deposition. Journal of Materials Science. 1981. 16. P. 17-23.

https://doi.org/10.1007/BF00552054

7. Awad Y., El Khakani M.A., Aktik C. et al. Structural and mechanical properties of amorphous silicon carbonitride films prepared by vapor-transport chemical vapor deposition. Surf. Coat. Tech. 2009. 204. P. 539-545.

https://doi.org/10.1016/j.surfcoat.2009.08.032

8. Bendeddouche A., Berjoan R., Beche E., Hillel R. Hardness and stiffness of amorphous SiCxNy chemical vapor deposited coatings. Surf. Coat. Tech. 1999. 111. P. 184-190.

https://doi.org/10.1016/S0257-8972(98)00733-6

9. Fajner N.I., Kosinova M.L., Rumyancev Yu.M. Tonkie plenki karbonitridov kremniya i bora: sintez, issledovanie sostava i struktury. Ros. him. zh. (Zh. Ros. him. ob-va im. D.I. Mendeleeva). 2001. T. XLV, № 3. S. 101-108.

10. Zhang W., Zhang K. and Wang B. Influence of temperature on the properties of SiCxNy:H films prepared by plasma-enhanced chemical vapour deposition. Mat. Sci. Engn. 1994. B26. P.133-140.

https://doi.org/10.1016/0921-5107(94)90161-9

11. Swain B. P., Hwang N. M. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition. Appl. Surf. Sci. 2008. 254. P. 5319-5322.

https://doi.org/10.1016/j.apsusc.2008.02.077

12. Zhang D.H., Gao U.Y., Wei J., Mo Z.Q. Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD. Thin Solid Films. 2000. 377-378. P. 607-610.

https://doi.org/10.1016/S0040-6090(00)01277-3

13. Cheng W., Jiang J., hang Y. Z. et al. Effect of the deposition conditions on the morphology and bonding structure of SiCN films. Mater. Chem. Phys. 2004. 85. P. 370-376.

https://doi.org/10.1016/j.matchemphys.2004.01.015

14. Chen C.W., Huang C.C., Lin Y.Y. et al. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film. Diamond Relat. Mater. 2005. 14. P. 1126-1130.

https://doi.org/10.1016/j.diamond.2004.10.045

15. Matsutani T., Yamasaki K., Tsutsui H. et al. Matsutani T., Yamasaki K., Tsutsui H. et al. Amorphous SiCN diaphragm for transmission electron microscope with environmental-cell fabricated by plasma-enhanced chemical vapor deposition. Vacuum. 2013. 88. P. 83-87.

https://doi.org/10.1016/j.vacuum.2012.03.033

16. Izumi A., Oda K. Deposition of SiCN films using organic liquid materials by HWCVD method. Thin Solid Films. 2006. 501. P. 195-197.

https://doi.org/10.1016/j.tsf.2005.07.210

17. Afanasyev-Charkin I.V. and Nastasi M. Hard Si-N-C coatings produced by pulsed glow discharge deposition. Surf. Coat. Technol. 2004. 186. P. 108-111.

https://doi.org/10.1016/j.surfcoat.2004.04.005

18. Du X.-W., Sun Y. Fu, J. and Yao P. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature. J. Appl. Phys. 2006. 99. P. 093503 (4 pp.).

https://doi.org/10.1063/1.2194208

19. Besling W.F.A., Goossens A., Meester B. and Schoonman J. Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J. Appl. Phys. 1998. 83. P. 544-553.

https://doi.org/10.1063/1.366669

20. Xie E., Ma Z., Lin H. et al. Preparation and characterization of SiCN films. Optical Materials. 2003. 23. P. 151-156.

https://doi.org/10.1016/S0925-3467(03)00077-6

21. Peng Y., Zhou J., Zhang Z. et al. Influence of radiofrequency power on compositional, structural and optical properties of amorphous silicon carbonitride films. Appl. Surf. Sci. 2010. 256. P. 2189-2192.

https://doi.org/10.1016/j.apsusc.2009.09.071

22. Shi Z., Wang Y., Du C. et al. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering. Appl. Surf. Sci. 2011. 258. P. 1328-1336.

https://doi.org/10.1016/j.apsusc.2011.09.036

23. Pusch C., Hoche H., Berger C. et al. Influence of the PVD sputtering method on structural characteristics of SiCN-coatings - Comparison of RF, DC and HiPIMS sputtering and target configurations. Surf. Coat. Tech. 2011. 205. P. S119-S123.

https://doi.org/10.1016/j.surfcoat.2011.04.095

24. Shi Z., Wang Y., Huang N. et al. Microstructure, mechanical properties and wetting behavior of F: Si-C-N films as bio-mechanical coating grown by DC unbalanced magnetron sputtering. J. Allous Compouna. 2013. 552. P. 111-118.

https://doi.org/10.1016/j.jallcom.2012.08.012

25. Wu J.-J., Wu C.-T., Liao Y.-C. et al. Deposition of silicon carbon nitride films by ion beam sputtering. Thin Solid Films. 1999. 355-356. P. 417-422.

https://doi.org/10.1016/S0040-6090(99)00458-7

26. Carter G., He Z. and Colligon J.S. Ion-assisted deposition of C-N and Si-C-N films. Thin Solid Films. 1996. 283. P. 90-96.

https://doi.org/10.1016/0040-6090(96)08556-2

27. Park N.-M., Kim S.H. and Sung G.Y. Band gap engineering of SiCN film grown by pulsed laser deposition. J. Appl. Phys. 2003. 94. P. 2725-2728.

https://doi.org/10.1063/1.1594267

28. Yamamoto K., Koga Y. and Fujiwara S. XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diam. Relat. Mater. 2001. 10. P. 1921-1926.

https://doi.org/10.1016/S0925-9635(01)00422-8

29. Lehmann G., Hess P., Wu J.-J. et al. Structure and elastic properties of amorphous silicon carbon nitride films. Phys. Rev. B. 2001. 64. P.165305 (10 pp.).

https://doi.org/10.1103/PhysRevB.64.165305

30. Mazurenko Ye.A., Gerasimchuk A.I., Ovsyannikov V.P. Himichne osadzhennya z gazovoyi fazi, sintez funkcionalnih materialiv (oglyad). Fizika i himiya tverdogo tila. 2001. 2, № 3. S. 339 - 349.

31. Timoshenko N.I., Rebrov A.K. Kak poluchit nanostrukturnye plenki i pokrytiya iz gazovoj fazy. Elektronnyj resurs: nauchno-populyarnye materialy: obzor. Rezhim dostupa: http://www.itp.nsc.ru/articles/Populjarno_o_nanotehnologijah.html.

32. Bullot J. and Schmidt M. P. Physics of amorphous silicon-carbon alloys. Phys. Stat. Sol. B. 1987. 143. P. 345 - 418.

https://doi.org/10.1002/pssb.2221430202

33. Peter S., Gunther M., Berg S. et al. Mid-frequency PECVD of a-SiCN:H films and their structural, mechanical and electrical properties. Vacuum. 2013. 90. P. 155-159.

https://doi.org/10.1016/j.vacuum.2012.04.001

34. Pierson H.O. Handbook of chemical vapor deposition. Noyes Publications. Park Ridge. 1992. 125 p.

https://doi.org/10.1016/B978-0-8155-1300-1.50008-8

35. Tehnologiya tonkih plenok. Spravochnik. Pod red. L. Majssela, R. Glenga. Nyu-Jork. 1970. Per. s angl. Pod red. M.I. Elinsona, G.G. Smolko. T. 1. M.: Sov. Radio. 1977. 664 s.

36. Azarenkov N.A., Beresnev V.M., Pogrebnyak A.D. i dr. Nanomaterialy, nanopokrytiya, nanotehnologii. Uchebnoe posobie. Harkov.:HNU im. V.N. Karazina. 2009. 209 s.

37. Chen Z., Lin H., Zhou J. et al. IR studies of SiCN films deposited by RF sputtering method. J. Alloy Compd. 2009. 487. P. 531-536.

https://doi.org/10.1016/j.jallcom.2009.08.009

38. Kurnosov A.I. Tehnologiya proizvodstva poluprovodnikovyh priborov i integralnyh mikroshem. Ucheb. posobie dlya vuzov. 3-e izd., pererab. i dop. -Moskva: Vyssh. shk. 1986. 368 s.

39. Smirnov V.I. Fiziko-himicheskie osnovy tehnologii elektronnyh sredstv. Uchebnoe posobie. Ulyanovsk: UlGTU. 2005. 112 s.

40. Xiao X.-S., Li Ya.-W., Song L.-X. et al. Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar. Appl. Surf. Sci. 2000. 156. P. 155-160.

https://doi.org/10.1016/S0169-4332(99)00493-6

41. Peng Y., Zhou J., Zhao B. et al. Effect of annealing temperature and composition on photoluminescence properties of magnetron sputtered SiCN films. Thin Solid Films. 2011. 519. P. 2083-2086.

https://doi.org/10.1016/j.tsf.2010.10.058

42. Kelly P.J., Arnell R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum. 2000. 56. P. 159-172.

https://doi.org/10.1016/S0042-207X(99)00189-X

43. Borisov S.F. Mezhfaznaya granica gaz-tverdoe telo: struktura, modeli, metody issledovaniya. Uchebnoe posobie. Ekaterinburg. 2001. 100 s.

44. Shayapov V.R., Rumyantsev Yu.M., Dzyuba A.A. et al. Mechanical stresses in silicon carbonitride films obtained by PECVD from hexamethyldisilazane. Appl. Surf. Sci. 2013. 265. P. 385-388.

https://doi.org/10.1016/j.apsusc.2012.11.017

45. Peng Y., Zhou J., Zhao B. et al. Structural and optical properties of the SiCN thin films prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2011. 257. P. 4010-4013.

https://doi.org/10.1016/j.apsusc.2010.11.166

46. Du X.-W., Fu Y., Sun J., Yao P. The effect of annealing atmosphere on photoluminescent properties of SiCN films. Surf. Coat. Technol. 2007. 201. P. 5404-5407.

https://doi.org/10.1016/j.surfcoat.2006.07.046

47. Bendeddouche A., Berjoan R., Beche E. et al. SiCN Amorphous Materials Chemical Vapour Deposited Using the Si(CH3)4-NH3-H2 System. Journal de Physique IV Colloque C5, supplement au Journal de Physique II. 1995. 5. P. C5-793-C5-800.

https://doi.org/10.1051/jphyscol:1995594

48. Bulou S., Le Brizoual L., Miska P. et al. Structural and optical properties of a-SiCN thin film synthesised in a microwave plasma at constant temperature and different flow of CH4 added to HMDSN/ N2/Ar mixture. Surf. Coat. Technol. 2011. 205. P. S214-S217.

https://doi.org/10.1016/j.surfcoat.2011.02.014

49. Gong Z., Wang E.G., Xu G.C., Chen Y. Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films. Thin Solid Films. 1999. 348. P. 114-121.

https://doi.org/10.1016/S0040-6090(99)00020-6

50. Ng V.M., Xu M., Huang S.Y. et al. Assembly and photoluminescence of SiCN nanoparticles. Thin Solid Films. 2006. 506-507. P. 283-287.

https://doi.org/10.1016/j.tsf.2005.08.075

51. Sarangi D., Sanjines R., Karimi A. Effect of silicon doping on the mechanical and opticals proporties of carbon nitride thin films. Thin Solid Films. 2004. 447-448. P. 217-222.

https://doi.org/10.1016/S0040-6090(03)01054-X

52. Majumdar A., Das G., Patel N. et al. Microstructural and chemical evolution of CH3-incorporated (low-k) SiCO(H) films prepared by dielectric barrier discharge plasma. J. Electrochem. Soc. 2008. 155(1). P. D22-D26.

https://doi.org/10.1149/1.2801345

53. Yan X.B., Tay B.K., Chen G. and Yang S.R. Synthesis of silicon carbide nitride nanocomposite films by simple electrochemical method. Electrochem. Commun. 2006. 8. P. 737-740.

https://doi.org/10.1016/j.elecom.2006.03.005

54. Wagner N.J., Cordill J., Zajickova L. et al. Thermal plasma chemical vapor deposition of superhard nanostructured Si-C-N coatings. Mater. Res. Soc. Symp. Proc. 2005. 875. P. 69-74.

https://doi.org/10.1557/PROC-880-BB2.10/O3.10

55. Limmanee A., Otsubo M., Sugiura T.et al. Effect of thermal annealing on the properties of a-SiCN:H films by hot wire chemical vapor deposition using hexamethyldisilazane. Thin Solid Films. 2008. 516. P.652-655.

https://doi.org/10.1016/j.tsf.2007.06.217

56. Ferreira I., Fortunato E., Vilarinho P. et al. Hydrogenated silicon carbon nitride films obtained by HWCVD,PA-HWCVD and PECVD techniques. J. Non-Cryst. Solids. 2006. 352. P. 1361-1366.

https://doi.org/10.1016/j.jnoncrysol.2006.02.025

57. Jedrzejowski P., Cizek J., Amassian A. et al. Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films. 2004. 447-448. P. 201-207.

https://doi.org/10.1016/S0040-6090(03)01057-5

58. Wu X.C., Cai R.Q., Yan P.X. et al. SiCN thin film prepared at room temperature by RF reactive sputtering. Appl. Surf. Sci. 2002. 185. P. 262-266.

https://doi.org/10.1016/S0169-4332(01)00820-0

59. Gomez F. J., Prieto P., Elizalde E. and Piqueras J. SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition. Appl. Phys. Lett. 1996. 69. P. 773-775.

https://doi.org/10.1063/1.117887

60. Li X., Yang S. and Wu X. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma. J. Univ. Sci. Technol. B. 2006. 13. P. 272-276.

https://doi.org/10.1016/S1005-8850(06)60057-1

61. Chen L. C., Chen C. K., Wei S. L. et al. Crystalline silicon carbon nitride: A wide band gap semiconductor. Appl. Phys. Lett. 1998. 72. P. 2463-2465.

https://doi.org/10.1063/1.121383

62. Awad Y., El Khakani M. A., Scarlete M. et al. Structural analysis of silicon carbon nitride films prepared by vapor transport-chemical vapor deposition. J. Appl. Phys. 2010. 107. P. 033517 (6 pp.).

https://doi.org/10.1063/1.3289732

63. Swatowska B., Stapinski T. Optical and structural characterization of silicon - carbon - nitride thin films for optoelectronic. Phys. Stat. Solidi C. 2010. 7, No 3-4. P. 758-761.

https://doi.org/10.1002/pssc.200982672

64. Chen C.W., Huang C.C., Y.Y. Lin Y.Y. et al. Optical properties and photoconductivity of amorphous silicon carbon nitride thin films and its application for UV detection. Diam. Relat. Mater. 2005. 14. P.1010-1013.

https://doi.org/10.1016/j.diamond.2004.11.027

65. Huran J., Valovi A., Kuer M. et al. Hydrogenated silicon carbon nitride films prepared by PECVD tehnology: properties. Journal of Electrical Engineering. 2012. 63. P. 333-335.

https://doi.org/10.2478/v10187-012-0049-z

66. Perny M., Saly V., Vary M., Huran J. Electrical and structural properties of amorphous silicon carbide and its application for photovoltaic heterostructures. Electroenergetica. 2011. 4, No 3. P. 17-19.

67. Chen C.W., Chang T.C., Liu P.T. et al. Investigation of the electrical properties and reliability of amorphous SICN. Thin Solid films. 2004. 447-448. P. 632-637.

https://doi.org/10.1016/j.tsf.2003.09.053

68. Liu Yu., Zhang X., Chen C. et al. The photoluminescence of SiCN thin films prepared by C+ implantation into a-SiNx:H. Thin Solid Films. 2010. 518. P. 4363-4366.

https://doi.org/10.1016/j.tsf.2010.01.028

69. Wu Z.F., Hong B., Cheng K. et al. Structure and photoluminescence properties of SiCN films grown by dual ion beam reactive sputtering deposition. Vacuum. 2014. 101. P. 205-207.

https://doi.org/10.1016/j.vacuum.2013.08.016

70. Ermakova E., Rumyantsev Yu., Shugurov et al. PECVD synthesis, optical and mechanical properties of silicon carbon nitride films. Appl. Surf. Sci. 2015. 339. P. 102-108.

https://doi.org/10.1016/j.apsusc.2015.02.155

71. Hamakava J. Amorfnye poluprovodniki i pribory na ih osnove. [Per. s angl. pod red. S. S. Gorelika]. M.: Metallurgiya. 1986. 378 s.

72. Fizika gidrogenizirovannogo amorfnogo kremniya: Struktura, prigotovlenie i pribory. [Per s angl.]. Pod red. Dzh. Dzhounopulosa, Dzh. Lyukovski. T.1. M.: Mir. 1987. 363 c.

73. Meden A., Sho M. Fizika i primenenie amorfnyh poluprovodnikov. M.: Mir. 1991. 670 c.

74. Lo H.C., Wu J.J., Wen C.Y. Bonding characterization and nano-indentation study of the amorphous SiC N films with and without hydrogen x y incorporation. Diam. Relat. Mater. 2001. 10. P. 1916-1920.

https://doi.org/10.1016/S0925-9635(01)00421-6

75. Vlek J., Kormunda M., Cizek J., Perina V., Zemek J. Influence of nitrogen-argon gas mixtures on reactive magnetron sputtering of hard Si-C-N films. Surf. Coat. Technol. 2002. 160. P. 74-81.

https://doi.org/10.1016/S0257-8972(02)00328-6

76. Dressler W., Riedel R. Progress in silicon-based non-oxide structural ceramics. Int. J. Refract. Metals and Hard Mater. 1997. 15. P.13-47.

https://doi.org/10.1016/S0263-4368(96)00046-7

77. Shengyang FU, Min ZHU, Yufang ZHU, Organosilicon polymer-derived ceramics: An overview. J. Advanced Ceram. 2019. 8. P. 457-478.

https://doi.org/10.1007/s40145-019-0335-3

78. Bhattacharyya A. Nanocomposite Si-C-N Coatings. LAP LAMBERT Academic Publishing. 2018. 68 p.

79. Perny M., Saly V., Vary M., Huran J. Electrical and Structural Properties of Amorphous Silicon Carbide and Its Application for Photovoltaic Heterostructures. Elektroenergetika. 2011. 4. 17-19.

80. Chen C.W., Chang T.C., Liu P.T. et al. Investigation of electrical properties and reliability of amorphous SiCN. Thin Solid Films. 2004. 447-448. P. 632-637.

https://doi.org/10.1016/j.tsf.2003.09.053

81. Haluschka C., Engel C. and Riedl R. Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties. J. Eur. Ceram. Soc. 2000. 20. P. 1365-1374.

https://doi.org/10.1016/S0955-2219(00)00009-1

82. Ramakrishnan P.A., Wang Y.T., Balzar D. et al. Silicoboron-carbonitride ceramics: A class of high-temperature dopable electronic material. Appl. Phys. Lett. 2001. 78. P. 3076-3078.

https://doi.org/10.1063/1.1370540

83. Huran J., Valovic A., Kucera M. et al. Hydrogenated amorphous silicon carbon nitride films prepared by PECVD technology: properties. J. Electrical Engineering. 2012. 63. P. 333-335.

https://doi.org/10.2478/v10187-012-0049-z

84. Zhang D.H., Gao U. Y., Wei J., Mo Z.Q. Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD. Thin Solid Films. 2000. 377-378. P. 607-610.

https://doi.org/10.1016/S0040-6090(00)01277-3

85. Kobayashi K., Yokoyama H., Endoh M. Leakage current and paramagnetic defects in SiCN dielectrics for copper diffusion barriers. Appl. Surf. Sci. 2008. 254. P. 6222-6225.

https://doi.org/10.1016/j.apsusc.2008.02.144

86. Ivashchenko V.I., Kozak A.O., Porada O.K. et al. Characterization of SiCN thin films: Experimental and theoretical investigations. Thin Solid Films. 2014. 569. P. 57-63.

https://doi.org/10.1016/j.tsf.2014.08.027

87. Kozak A.O., Ivashchenko V.I., Porada O.K. et al. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: An effect of substrate bias. Mater. Sci. Semicond. Proc. 2018. 88. P. 65-72.

https://doi.org/10.1016/j.mssp.2018.07.023

88. Kozak A.O., Ivashchenko V.I., Porada O.K. et al. Optical properties of PECVD Si-C-N films. J. Nano-Electron. Phys. 2015. 7. P. 03040-1-03040-6.

89. Porada O.K., Manzhara V.S., A.O. Kozak A.O., Ivashchenko V.I. et al. Photoluminescence Properties of PECVD Si-C-N Films. J. Nano-Electron. Phys. 2017. 9. P. 02022-1-02022-6.

https://doi.org/10.21272/jnep.9(2).02022

90. Sukach A.V., Tetyorkin V.V., Tkachuk A.I. et al. Optoelectronic properties and carrier transport mechanisms in amorphous SiCN. J. Non.-Cryst. Solids. 2019. 523. P. 119603.

https://doi.org/10.1016/j.jnoncrysol.2019.119603

91. Lampert M.A., Mark P. Current Injection in Solids. Academic Press: New York. 1970.

92. Kao K.C., Hwang W. Electrical Transport in Solids. With Particular Reference to Organic Semiconductors. Oxford: Pergamon Press.1981.

93. Henderson H.T., Ashley K.L. Space-charge-limited current in neutron-irradiated silicon, with evidence of the complete Lampert triangle. Phys. Rev. 1969. 186. P. 811-815.

https://doi.org/10.1103/PhysRev.186.811

94. Nicolet M.-A. Unipolar space-charge-limited current in solids with nonuniform spacial distribution of shallow traps. J. Appl. Phys. 1966. 37. P. 4224-4235.

https://doi.org/10.1063/1.1708004

95. Sworakowski J., Pigon K. Trap distribution and space-charge limited currents in organic crystals. Anthracene. J. Phys. Chem. Solids. 1969. 30. P. 491-496.

https://doi.org/10.1016/0022-3697(69)90004-3

96. Sworakowski J. Space-charge-limited currents in solids with non-uniform spatial trap distribution. J. Appl. Phys. 1970. 41. P. 292-295.

https://doi.org/10.1063/1.1658336

97. Nicolai H.T., Mandoc M.M., Blom P.W.M. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution. Phys. Rev. B. 2011. 83. P.195204-1-195204-5.

https://doi.org/10.1103/PhysRevB.83.195204

98. Hwang W., Kao K.C. Studies of the theory of single and double injections in solids with a Gaussian trap distribution. Solid State Electron. 1976. 19. P. 1045-1047.

https://doi.org/10.1016/0038-1101(76)90191-X

99. Mark P., Helfrich W. Space-charge-limited currents in organic crystals. J. Appl. Phys. 1962. 33. P. 205-215.

https://doi.org/10.1063/1.1728487

100. Nespurek S., Smejtek P., Space-charge limited currents in insulators with the Gaussian distribution of traps. Czechoslov. J. Phys. 1972. 22. P. 160-175.

https://doi.org/10.1007/BF01709967

101. Fleissner A., Weise W., von Seggern H. Unipolar space-charge limited current through layers with a disparate concentration of shallow traps: Experiment and model. J. Appl. Phys. 2005. 97. P. 043701.

https://doi.org/10.1063/1.1840094

102. Dacuna J., Salleo A. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility. Phys. Rev. B. 2011. 84. P. 195209-1 -195209-9.

https://doi.org/10.1103/PhysRevB.84.195209

103. Bak G.W., Lipinski A., A. Space charge-limited currents in thin film solid dielectrics with non-uniform deep-trap distributions: numerical solutions. Thin Solid Films. 1994. 238. P. 290-294.

https://doi.org/10.1016/0040-6090(94)90069-8

104. Zhang W., Zhang K., Wang B. Influence of temperature on the properties of SiCxNy:H films prepared by plasma-enhanced chemical vapor deposition. Materials Science and Engineering. 1994. B26. P. 133-140.

https://doi.org/10.1016/0921-5107(94)90161-9

105. Lo H.C., Wu J.J., Wen C.Y. et al. Bonding characterization and nano-indentation study of the amorphous SiCxNy films with and without hydrogen incorporation. Diamond and Related Materials. 2001. 10. P.1916-1920.

https://doi.org/10.1016/S0925-9635(01)00421-6

106. Jung D.-C., Lim H.-G., Jee H-I. et.al. Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties. Surface and Coatings Technology. 2003. 171. P. 46-50.

https://doi.org/10.1016/S0257-8972(03)00234-2

107. Chang Wei-Yuan, Chang Chieh-Yu, Leu Jihperng. Optical properties of plasma-enhanced chemical vapor deposited SiCxNy films by using silazane precursors. Thin Solid Films. 2017. 636. P. 671-679.

https://doi.org/10.1016/j.tsf.2017.07.016

108. Bendeddouche A., Berjoan R., Beche E. et al. SiCN Amorphous Materials Chemical Vapour Deposited Using the Si(CH3)4-NH3-H2 System. J. de Phys. IV. 1995. C5. P.793-800.

https://doi.org/10.1051/jphyscol:1995594

109. Kobayashi K., Ide T. Photoinduced paramagnetic defects and negative charge in SiCN dielectrics for copper diffusion barriers. Thin Solid Films. 2010. 518. P. 3305-3309.

https://doi.org/10.1016/j.tsf.2009.09.083

110. Al Ahmed S. R., Kato K., Kobayashi K. Hole trapping characteristics of silicon carbonitride (SiCN)-based charge trapping memories evaluated by the constant-current carrier injection method. Mat. Sci. Semicond. Proc. 2017. P. 215-222.

https://doi.org/10.1016/j.mssp.2017.01.012

111. Lannoo M. The role of dangling bonds in the properties of surfaces and interfaces in semiconductors. Revue Phys. Appl. 1990. 25. P. 887-894.

https://doi.org/10.1051/rphysap:01990002509088700

112. Sukach A.V., Tetorkin V.V., Ivashenko V.I. ta in. Elektrichni ta fotoelektrichni vlastivosti geteroperehodiv a-SiCN/c-Si. Optoelektronika i poluprovodnikovaya tehnika. 2013. Vyp.48. S. 96 - 104.

А.М. Міняйло, І.В. Пекур, В.І. Корнага, Д.В. Пекур, В.М. Сорокін

ШЛЯХИ ПОБУДОВИ ЕНЕРГОЕФЕКТИВНИХ СВІТЛОДІОДНИХ

СИСТЕМ ФІТООСВІТЛЕННЯ

Освітлення рослинних культур (фітоосвітлення), реалізоване на основі світлодіодів, здійснило

революцію в галузі землеробства закритого ґрунту і при вирощуванні культур у закритих контрольованих

середовищах завдяки можливості оптимізації його спектрального складу та високій енергоефективності.

Застосування спеціалізованого квазімонохроматичного випромінювання джерел світла дозволяє активувати

специфічні фотоморфогенні, біохімічні або фізіологічні реакції рослин, а світлодіодне випромінювання

визначеного спектрального складу (наприклад, УФ-випромінювання) дозволяє боротися зі шкідниками та

хворобами рослин. Проведений літературний аналіз вказує на видо - та сортоспецифічну реакцію рослин на

світлове випромінювання визначеного спектрального складу і на її зміну в залежності від стадії розвитку

рослин, а також інтенсивності освітленості, тривалості розвитку рослин та специфічних взаємодій з

навколишнім середовищем. На основі розроблених рекомендацій до спектрального складу випромінювання,

призначеного для освітлення рослинних культур, було визначено вимоги до спектрального складу світла систем

фітоосвітлення. Визначено ефективність світлодіодів різного спектрального складу для освітлення рослин та

найбільш енергоефективні світлодіоди для використання в системах фітоосвітлення. В роботі було розроблено

спеціалізоване програмне забезпечення для визначення фотонної ефективності випромінювання та визначено її

для широкої номенклатури світлодіодних джерел світла. Досліджені світлодіоди мали фотонну ефективність в

діапазоні від 3,78 мкмоль/Дж (квазімонохроматичні сині світлодіоди) до 5,46 мкмоль/Дж (квазімонохроматичні

червоні світлодіоди). Білі світлодіоди в залежності від індексу кольоропередачі мали фотонну ефективність в

діапазоні 4,62-4,79 мкмоль/Дж. Деякі сучасні білі світлодіоди з високим індексом кольоропередачі мають

фотонну ефективність, наближену до фітоосвітлення, реалізованого на основі спеціалізованих

квазімонохроматичних світлодіодів, проте їхня ефективність з урахуванням вагового коефіцієнта використання

фотонів з різною довжиною хвилі для фотосинтезу значно нижча.

Ключові слова: світлодіод, фітоосвітлення, спектральний склад світла, індекс кольоропередачі,

фотонна ефективність, коефіцієнт використання світлового потоку.