https://doi.org/10.15407/jopt.2017.52.050

Optoelectron. Semicond. Tech. 52, 50-69 (2017)

R.A. Red’ko, N.D. Vakhnyak, O.P. Lotsko, G.V. Milenin, V.V. Milenin, S.M. Redko

INFLUENCE OF MICROWAVE RADIATION TREATMENT ON PHOTOLUMINESCENT PROPERTIES OF II-VI COMPOUNDS (REVIEW)

The state of the problem of microwave frequency treatment of II-VI compounds has been analyzed. The factors of microwave interactions of electromagnetic radiation with semiconductor materials and features of induced transformations of their spectra of radiative recombination have been ascertained. Estimations of thermal and nonthermal energy transformations for this kind of interaction and possible physical mechanisms of microwave effects on II-VI compounds have been adduced.

Keywords: microwave radiation treatment, photoluminescence, cadmium telluride, cadmium sulfide, nonthermal interaction.

References

1. Pyushner G. Nagrev energiej sverhvysokih chastot. M.: Energiya, 1968. (in Russian)

2. D. Michael P. Mingos, Microwave syntheses of inorganic materials. Advanced Materials. 1993. 5. No 11. P. 857-859.

https://doi.org/10.1002/adma.19930051115

3. Caddick S. Microwave assisted organic reactions. Tetrahedron. 1995. 51, N 38. P. 10403-10432.

https://doi.org/10.1016/0040-4020(95)00662-R

4. Whittaker A.G., Mingos D.M.P. Microwave-assisted solid-state reactions involving metal powders. J. Chem. Soc., Dalton Trans. 1995. 12. P. 2073-2079.

https://doi.org/10.1039/dt9950002073

5. Whittaker A.G., Mingos D.M.P. Microwave-assisted solid-state reactions involving metal powders. J. Chem. Soc., Dalton Trans. 1992. 18. P. 2751-2752.

https://doi.org/10.1039/dt9920002751

6. Antitin V.V., Godovicyn V.A., Gromov D.V., Kozhevnikov A.S., Ravaev A.A. Vliyanie moshnyh impulsnyh mikrovolnovyh polej na poluprovodnikovye pribory i integralnye mikroshemy. Zarubezh. padioelektronika. 1995. №1. C. 37-53. (in Russian)

7. Pashkov V.I., Perevoshikov V.A., Skupov V.D. Vliyanie otzhiga v pole SVCh izlucheniya na ostatochnuyu deformaciyu i primesnyj sostav pripoverhnostnyh sloev kremniya. Pisma v ZhTF. 1994. 20, №8. S. 14-17. (in Russian)

8. Belyaev A.A., Belyaev A.E., Ermolovich I.B., Komirenko S.M., Konakova R.V., Lyapin V.G., Milenin V.V., Solovev E.A., Shevelev M.V. Vliyanie sverhvysokochastotnoj obrabotki na elektrofizicheskie harakteristiki tehnicheski vazhnyh poluprovodnikov i poverhnostno-barernyh struktur. 1998. ZhTF. 68, 12. C. 49. (in Russian)

9. Ermolovich I.B., Milenin G.V., Konakova R.V., Redko R.A. Ob osobennostyah modifikacii defektnoj struktury v binarnyh poluprovodnikah pod dejstviem mikrovolnovogo oblucheniya. ZhTF. 2007. 77, 9. P. 71. (in Russian)

10. Ermolovich I.B., Milenin V.V., Konakova R.V., Redko R.A. Vliyanie mikrovolnovogo oblucheniya na izluchatelnuyu rekombinaciyu soedinenij A3V5. Fizika i himiya obrabotki materialov. 2006. №5. S. 13-18. (in Russian)

11. Gorelov B.M. Zahvat elektronov dislokaciyami v sverhvysokochastotnom pole v sulfidah cinka i kadmiya. Pisma v ZhTF. 2005. 31, №1. C. 82-87. (in Russian)

12. Zavertannyj V.V., Zavertannaya L.S., Eremka V.D. Osobennosti kinetiki dolgovremennyh processov v neodnorodnyh monokristallah sulfida kadmiya v SVCh-pole. Trudy 6-j mezhdunarodnoj konferencii «SVCh-tehnika i telekommunikacionnye tehnologii». Sevastopol, Veber, 1998. S. 162-164. (in Russian)

13. Ermolovich I.B., Milenin V.V., Redko R.A., Redko S.N. Vliyanie mikrovolnovogo oblucheniya na izluchatelnuyu rekombinaciyu CdS. Izvestiya vuzov. Radioelektronika. 2006. 7, №8. C. 71-75. (in Russian)

14. Korbutyak D.V., Melnichuk S.V., Tkachuk P.M. Domishkovo-defektna struktura CdTe:Cl - materialu dlya detektoriv ionizuyuchogo viprominyuvannya. UFZh. 1999. 44, N 6. C. 730. (in Russian)

15. Takanashi T., Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 2001. 48, N4. Р. 950-959.

https://doi.org/10.1109/23.958705

16. Rodríguez-Castañeda C.A., Moreno-Romero P.M., Martínez-Alonso C., and Hailin Hu. Microwave synthesized monodisperse CdS spheres of different size and color for solar cell applications. J. Nanomater. 2015. Article ID 424635. 10 p.

https://doi.org/10.1155/2015/424635

17. Gerbec J.A., Magana D., Washington A., and Strouse G.F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Amer. Chem. Soc. 2005. 127, no. 45. P. 15791-15800.

https://doi.org/10.1021/ja052463g

18. Verma Seema, Joy P.A., Khollam Y.B., Potdar H.S., Deshpande S.B. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater. Lett. 2004. 58, N 6, P. 1092-1095.

https://doi.org/10.1016/j.matlet.2003.08.025

19. Junjie Zhu, Palchik O., Siguang Chen, Gedanken A. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. J. Phys. Chem. B. 2000. 104, N 31. P. 7344-7347.

https://doi.org/10.1021/jp001488t

20. Patent na korisnu model № 47578. Ukrayina. MPK H01 L 21/04 (2009.01). Sposib vigotovlennya telurid-kadmiyevogo detektora g ta X-viprominyuvannya. Locko O.P., Korbutyak D.V., Demchina L.A., Yermakov V.M., Konakova R.V., Milyenin V.V., Redko R.A. Zayavka № u2009 09286. Data podannya 10.09.2009. Opubl. 10.02.2010, Byul. №3. (in Russian)

21. Rustum Roy, Accelerating the kinetics of low-temperature inorganic syntheses. J. Solid State Chem. 1994. 111, N 1. P. 11-17.

https://doi.org/10.1006/jssc.1994.1192

22. Vadivel Murugan A., Sonawane R.S., Kale B.B., Apte S.K., Kulkarni Aarti V. Microwave-solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. and Phys. 2001. 71, N 1, P. 98-102.

https://doi.org/10.1016/S0254-0584(00)00533-2

23. Murugan A.V., Kale B. B., Kulkarni A. V., Kunde L.B., Saaminathan V. Novel approach to control CdS morphology by simple microwave-solvothermal method. J. Mater. Sci.: Mater. Electron. 2005. 16. P. 295.

https://doi.org/10.1007/s10854-005-0547-x

24. Junjie Zhu, Miaogao Zhou, Jinzhong Xu, Xuehong Liao, Preparation of CdS and ZnS nanoparticles using microwave irradiation. Mater. Lett. 2001. 47, N 1-2. P. 25-29.

https://doi.org/10.1016/S0167-577X(00)00206-8

25. Rong He, Xue-feng Qian, Jie Yin, Hong-an Xi, Li-juan Bian, Zi-kang Zhu, Formation of monodispersed PVPcapped ZnS and CdS nanocrystals under microwave irradiation. Colloids and Surfaces A: Physicochem. And Eng. Aspects. 2003. 220, N 1-3. P. 151-157.

https://doi.org/10.1016/S0927-7757(03)00072-4

26. Liang Li, Huifeng Qiana, Jicun Ren, Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005. N 4. P. 528-530.

https://doi.org/10.1039/b412686f

27. Duan J., Song L. & Zhan, One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. J. Nano Res. 2009. 2, N 1. P. 61-68.

https://doi.org/10.1007/s12274-009-9004-0

28. He Y., Lu H.-T., Sai L.-M., Su Y.-Y., Hu M., Fan C.-H., Huang W. and Wang L.-H. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 2008. 20. P. 3416-3421.

https://doi.org/10.1002/adma.200701166

29. Yao He, Hao-Ting Lu, Li-Man Sai, Wen-Yong Lai, Qu-Li Fan, Lian-Hui Wang, Wei Huang. Microwaveassisted growth and characterization of water-dispersed CdTe/CdS core−shell nanocrystals with high photoluminescence. J. Phys. Chem. B. 2006. 110, N 27. P. 13370-13374.

https://doi.org/10.1021/jp057498h

30. Yao He, Li-Man Sai, Hao-Ting Lu, Mei Hu, Wen-Yong Lai, Qu-Li Fan, Lian-Hui Wang, Wei Huang, Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem. Mater. 2007. 19, N 3. P. 359-365.

https://doi.org/10.1021/cm061863f

31. He H., Sun X., Wang X., and Xu H. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands. Lumin. 2014. 29. P. 837-845.

https://doi.org/10.1002/bio.2630

32. Washington II A.L., Strouse G.F. Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J. Am. Chem. Soc. 2008. 130, N 28. P. 8916-8922.

https://doi.org/10.1021/ja711115r

33. Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. Ed. by Satoshi Horikoshi and Nick Serpone. Berlin: Wiley-VCH, 2013.

34. Richard Hoogenboom, Urich S. Schubert, Frank Wiesbrock. Microwave-assisted Polymer Synthesis, Springer, 2016.

https://doi.org/10.1007/978-3-319-42241-1

35. Korbutyak D.V., Locko A.P., Vahnyak N.D., Demchina L.A., Konakova R.V., Milenin V.V., Redko R.A. Vliyanie SVCh-oblucheniya na fotolyuminescenciyu svyazannyh eksitonov v monokristallah CdTe:Cl. FTP. 2011 45, №9. S.1175-1181. (in Russian)

36. Yermolovich I.B., Konakova R.V., Milyenin V.V., Ohrimenko O.B., Redko R.A. Modifikaciya defektnoyi strukturi SiO2/GaAs visokochastotnim elektromagnitnim viprominyuvannyam. Fizika i himiya tverdogo tila. 2006. 7, №4. S. 763-766. (in Ukrainian)

37. Redko R.A., Budzulyak S.I., Korbutyak D.V. i dr. Vliyanie SVCh-obrabotok na lyuminescentnye svojstva monokristallov CdS i CdTe:Cl. FTP. 2015. 49, №7. S. 916-919. (in Russian)

https://doi.org/10.1134/S1063782615070209

38. Ermolovich I.B., Redko R.A. Vliyanie kratkovremennogo SVCh oblucheniya CdS kristallov na spektr centrov izluchatelnoj rekombinacii v nih. Materialy 6-j mezhdunarodnoj konferencii «VITT», Minsk, 2005. S. 36-38. (in Russian)

39. Nemcev G.Z., Pekarev A.I., Chistyakov Yu.D., Burmistrov A.N. Getterirovanie tochechnyh defektov v proizvodstve poluprovodnikovyh priborov. Zarubezhnaya elektronnaya tehnika. 1981. №11. C. 3-63. (in Russian)

40. Abdurahimov D.E., Vahidov F.Sh., Bereshagin V.L., Kalinushkin V.I., Ploppa M.G., Rajzer M.D. Izmenenie svojstv poluprovodnikovyh materialov v rezultate vozdejstviya SVCh-impulsov nanosekundnoj i mikrosekundnoj dlitelnosti. Mikroelektronika. 1991. 20, №1. C. 21-25. (in Russian)

41. Belyaev A.E., Belyaev A.A., Venger E.F. i dr. Vliyanie SVCh- izlucheniya na strukturnye, fiziko-himicheskie i elektrofizicheskie svojstva ryada poluprovodnikovyh materialov i pribornyh struktur. Trudy 6-j mezhdunarodnoj konferencii «SVCh-tehnika i telekommunikacionnye tehnologii». Sevastopol, Veber, 1996. C. 71-91. (in Russian)

42. Boltovec N.S., Kamalov A.B., Kolyadina E.Yu., Konakova R.V., Litvin P.M., Litvin O.S., Matveeva L.A., Milenin V.V., Rengevich A.E. Relaksaciya vnutrennih mehanicheskih napryazhenij v arsenid gallievyh pribornyh strukturah, stimulirovannaya mikrovolnovoj obrabotkoj. Pisma v ZhTF. 2002. 28, №4. C. 57-63. (in Russian)

43. Patent USA № US4303455A. Low-temperature microwave annealing of semiconductor devices. Splinter M.R., Palys R.F., Begrawaia M.M. 1980.

44. A.s. № SU880174A SSSR. Sposob otzhiga poluprovodnikovyh plastin. Krysov G.A., Afanasev V.A., Trusov S.G. 18.06.80. (in Russian)

45. Rzhanov A.V., Gerasimenko N.N., Vasilev S.V. i dr. SVCh nagrev kak metod termoobrabotki poluprovodnikov. Pisma v ZhTF. 1981. 7, №20. S. 1221-1223. (in Russian)

46. Abdurahimov D.E., Vereshagin V.L., Kalinushkin V.P., Nikitkin V.A., Ploppa M.G., Rajzer M.D. Vliyanie impulsnyh SVCh-polej na vremya nositelej toka v kremnii. Kratkie soobsheniya po fizike. 1991. №6. C. 27-29. (in Russian)

47. Abdurahimov D.E., Bogikashvili P.N., Vereshagin V.L., Kalinushkin V.P., Obuhov A.L., Ploppa M.G., Rajzer M.D., Rad E.I. Vozdejstvie elektromagnitnyh SVCh-impulsov na strukturu primesnyh naodnorodnostej v kristallah kremniya i harakteristiki poluprovodnikovyh elementov. Mikroelektronika. 1992. 21, №1. C. 82-89. (in Russian)

48. Bykov Yu.V., Eremeev A.G., Zharov N.A., Plotnikov N.V., Rybakov R.I., Drozdov M.N., Drozdov Yu.N., Skupov V.D. Diffuzionnye processy v poluprovodnikovyh strukturah pri mikrovolnovom otzhige. Izvestiya vuzov. Radiofizika. 2003. XLVL, №8-9. C. 836-843. (in Russian)

49. Gurevich Yu.G., Mashkevich O.L. Rasprostranenie silnoj SVCh volny v poluprovodnikah s neravnovesnymi fononami. FTT. 1984. 21, №10. S. 3154-3159. (in Russian)

50. Subbuswamg R.R., Mills D.L. Theory of micro-wave absorption in wide-band gap insulators: the role of Hurmal phonon lifetimes. Phys. Rev. B. 1986. 33, N 6. P. 4213--4220.

https://doi.org/10.1103/PhysRevB.33.4213

51. Vinnik E.V., Guroshev V.I., Prohorovich A.V., Shevelev M.V. Ispolzovanie moshnogo SVCh izlucheniya dlya bystrogo otzhiga arsenida galliya. Optoelektronika i poluprovodnikovaya tehnika. 1989. №15. C. 48-50. (in Russian)

52. Milenin V.V., Konakova R.V., Statov V.A., Sklyarevich V.E., Thorik Yu.A., Filatov M.Yu., Shevelev M.V. Fiziko-himicheskie processy na granice razdela kontaktov Au/Pt/Cr/Pt/GaAs, podvergnutyh SVCh otzhigu. Pisma v ZhTF. 1994. 20, №.4. C. 32-35. (in Russian)

53. Vorobev E.A., Mihajlov V.F., Haritonov A.A. SVCh dielektriki v usloviyah vysokih temperatur. M.: Sov. radio, 1977. (in Russian)

54. Kiper R.A. Svojstva veshestv: Spravochnik po himii. Habarovsk, 2013. (in Russian)

55. Davidyuk G.E., Bogdanyuk N.S., Shavarova A.P., Fedonyuk A.A. Preobrazovanie centrov krasnoj i infrakrasnoj lyuminescencii pri elektronnom obluchenii i otzhige monokristallov CdS i CdS:Cu. FTP. 1997. 31, №8. C. 1013-1016. (in Russian)

https://doi.org/10.1134/1.1187242

56. Pasynkov V.V. Materialy elektronnoj tehniki. M.: Vysshaya shkola, 1986. (in Russian)

57. Teslenko V.V., Gorbik P.P., Mazurenko R.V. i dr. Sostoyanie poverhnosti i dielektricheskie poteri v dispersnom diokside vanadiya. Himiya, fizika i tehnologiya poverhnosti. 1999. Vyp. 3. S. 62-65. (in Russian)

58. Zavertannaya L.S., Zavertannyj V.V., Eremka V.D. Vliyanie SVCh-energii na neravnovesnye zaryadovye sostoyaniya v sulfid-kadmievyh priemnikah izlucheniya. Trudy 6-j mezhdunarodnoj konferencii «SVCh-tehnika i telekommunikacionnye tehnologii». 1998. S. 165-167. (in Russian)

59. Mashkovich M.D. Elektricheskie svojstva neorganicheskih dielektrikov v diapazone SVCh. M.: Sov. radio, 1969. (in Russian)

60. Korbutyak D.V., Melnichuk S.V., Korbut E.V., Borisyuk M.M. Tellurid kadmiya: primesno-defektnye sostoyaniya i detektornye svojstva. Kiev: izd-vo «Ivan Fedorov», 2000. (in Russian)

61. Klyuchnik A.V. Vliyanie intensivnogo SVCh izlucheniya na strukturu morskogo lda. ZhTF. 1992. 62, №7. S. 99-107. (in Russian)

62. Ю П., Кардона М. Основы физики полупроводников. М.: Физматлит, 2002.

Yu P., Kardona M. Osnovy fiziki poluprovodnikov. M.: Fizmatlit, 2002. (in Russian)

63. Zayac N.S., Konakova R.V., Milenin V.V., Redko R.A., Milenin G.V., Redko S.N. Strukturnye transformacii v gomo- i geterogennyh sistemah na osnove GaAs, obuslovlennye SVCh oblucheniem. ZhTF. 2015. 85, №3. S. 114-118. (in Russian)

64. Milenin G.V., Red'ko R.A. Physical mechanisms and models of the long-term transformations in radiative recombination observed in n-GaAs under microwave irradiation. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19, №1. P.14-22.

https://doi.org/10.15407/spqeo19.01.014

65. Red'ko R.A., Budzulyak S.I., Vakhnyak N.D. et al. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals. J. Lumin. 2016. 178. P. 68-71.

https://doi.org/10.1016/j.jlumin.2016.05.032

66. Budzulyak S.I., Korbutyak D.V., Locko A.P. i dr. Osobennosti transformacii primesno-defektnyh kompleksov v CdTe:Cl pod vozdejstviem SVCh-oblucheniya. Tehnologiya i konstruirovanie v elektronnoj apparature. 2014. №4. S. 45-49. (in Russian)

67. Vakhnyak N.D., Lotsko O.P., Budzulyak S.I. et al.Transformation of impurity-defect centers in single crystals CdTe:Cl under the influence of microwaves. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2017. 20, №2. P. 250-253.

https://doi.org/10.15407/spqeo20.02.250

68. Budzulyak S.I., Vahnyak N.D., Demchina L.A. i dr. Vliyanie SVCh-oblucheniya na spektry

fotolyuminescencii monokristallov CdTe:Cl pri T = 2 K. Zhurnal fiziki i inzhenerii poverhnosti. 2016. 1, № 2, S. 128-134. (in Russian)

69. Loginov Yu.Yu., Braun P. D., Dyurouz Ken. Zakonomernosti obrazovaniya strukturnyh defektov v poluprovodnikah A2B6. M.: Logos, 2003. (in Russian)

70. Buchachenko A.L. Magnitoplastichnost diamagnitnyh kristallov v mikrovolnovyh polyah. ZhETF. 2007. 132, vyp 3(9), S. 673-679. (in Russian)


Р.А. Редько, Н.Д. Вахняк, О.П. Лоцько, Г.В. Міленін, В.В. Мілєнін, С.М. Редько

ВПЛИВ МІКРОХВИЛЬОВОГО ВИПРОМІНЮВАННЯ НА ФОТОЛЮМІНЕСЦЕНТНІ ВЛАСТИВОСТІ СПОЛУК АIIBVI (ОГЛЯД)

Проаналізовано стан проблеми надвисокочастотних обробок сполук AIIBVI. Встановлено фактори мікрохвильових взаємодій електромагнітного випромінювання з напівпровідниковими матеріалами та особливості індукованих трансформацій їхніх спектрів випромінювальної рекомбінації. Проведено оцінки термічних і нетермічних енергетичних перетворень при взаємодіях такого роду та можливих фізичних механізмів мікрохвильових впливів на сполуки AIIBVI.

Ключові слова: мікрохвильова обробка, фотолюмінесценція, телурид кадмію, сульфід кадмію, нетермічна взаємодія.