https://doi.org/10.15407/jopt.2017.52.037

Optoelectron. Semicond. Tech. 52, 37-49 (2017)

G.V. Dorozinsky, О.М. Lyapin, H.V. Dorozinska, V.P. Maslov

State-of-the art and problems in developing sеnsor elements of devices basеd on surface plasmon resonance phenomenon (Review)

Considered in this review have been main directions of developing technology and construction of the available sensors based on surface plasmon resonance (SPR) phenomenon to increase their sensitivity and accuracy of measurements. It has been shown that reducing roughness of the plasmon carrying layer in the sensor as well as application of an additional covering dielectric layer with developed surface enables more than two-fold increase in the sensitivity due to the twice increased surface of interaction between the sensor and studied substance. The main technical way enabling to diminish surface roughness is the thermal annealing, and the best result is usually reached for the annealing temperature 120 °С. In most cases, as a dielectric layer they use metal oxides Al2O3, TiO2, SiOx and ZnO, which allows attaining the detection limit in changes of the studied substance refraction index close to 1·10–9, what is one order better than that in available commercial analytic devices based on SPR phenomenon. Shown in the review are promising directions to develop SPR sensorics such as application of multilayer graphene coatings and polymer layers prepared by polymerization in high-frequency plasma of inert gas. In our opinion, further development of these sensors will be directed to increasing the selectivity, wear resistance of the sensitive element surface as well as to developing the methods for regeneration of receptors suitable for multiple using the sensitive elements.

Keywords: surface plasmon resonance, sensors, technology, materials, polymer, graphene.

References

1. Matos Pires N. M., Dong T., Hanke U., Hoivik N. Recent developments in Optical detection technologies in Lab-on-a-Chip devices for biosensing applications. Sensors 2014. 14. P. 15458-15479.

https://doi.org/10.3390/s140815458

2. Matsubara K, Kawata S, Minami S. Optical Chemical sensor Based on Surface Plasmon Measurement. Applied Optics. 1988. 27. P. 1160-1163.

https://doi.org/10.1364/AO.27.001160

3. Gridina N., Dorozinsky G., Khristosenko R., Maslov V., Samoylov A., Ushenin Yu., Shirshov Yu. Surface plasmon resonance biosensor. Sensors & Transducers Journal. 2013. 149, № 2. P. 60-68.

4. Xu H, Kall M. Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sensors and Actuators. 2003. 87, № 2. P. 244-249.

https://doi.org/10.1016/S0925-4005(02)00243-5

5. Rella R., Siciliano P., Quaranta F. et al. Gas sensing measurements and analysis of the optical properties of poly [3-(butylthio)thiophene] Langmuir-Blodgett films. Sensors and Actuators B. 2000. 68. P. 203-209.

https://doi.org/10.1016/S0925-4005(00)00430-5

6. Dorozinsky G., Liptuga A., Gordienko V., Maslov V., Pidgornyi V. Diagnostics of motor oil quality by using the device based on surface plasmon resonance phenomenon. Scholars J. Eng. and Technol. 2015. 3. P. 372-374.

7. Minunni M., Mascini M. Detection of pesticide in drinking water using real-time biospecific interaction analysis. Anal. Lett. 1993. 26. P. 1441-1460.

https://doi.org/10.1080/00032719308017424

8. Dharmalingam G., Joy N.A., Grisafe B., Carpenter M.A. Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control. Beilstein Journal of Nanotechnology. 2012. 3. P. 712-721.

https://doi.org/10.3762/bjnano.3.81

9. Yanase Y., Hiragun T., Ishii K., Kawaguchi T. et al. Surface plasmon resonance for cell-based clinical diagnosis. Sensors. 2014. 14. P. 4948-4959.

https://doi.org/10.3390/s140304948

10. Kretschmann E., Reather H. Radiative decay of nonradiative surface plasmon excited by light. Z. Naturf. 1968. 23A. P. 2135-2136.

https://doi.org/10.1515/zna-1968-1247

11. Shalabney A., Abdulhalim I. Electromagnetic field distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance. Sensors and Actuators A. 2010. 159. P. 24-32.

https://doi.org/10.1016/j.sna.2010.02.005

12. Kretschmann E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen. Z. Phys. 1971. 241. P. 313-324.

https://doi.org/10.1007/BF01395428

13. Kosobukin V.A. The effect of amplification of an external electric field near the surface of metals and its manifestation in spectroscopy. Surface physics, chemistry, mechanics. 1983. 12. P. 5-21.

14. Braundmeier A.J., Arakawa E.T. Effect of surface roughness on surface plasmon resonance adsorption. J. Phys. Chem. Solids. 1974. 35. P. 517-520.

https://doi.org/10.1016/S0022-3697(74)80005-3

15. Weber W.H. Modulated surface-plasmon resonance for in situ metal-film surface studies. Phys. Rev. Lett. 1977. 39. P. 153-156.

https://doi.org/10.1103/PhysRevLett.39.153

16. Rengevich O.V., Shirshov Y.M., Ushenin Y.V., Beketov A.G. Separate determination of thickness and optical parameters by surface plasmon resonance: accuracy consideration. Semiconductor Physics, Quantum Electronics and Optoelectronics. 1999. 2, № 2. P. 28-35.

https://doi.org/10.15407/spqeo2.02.028

17. Severdenko V.P., Tochitskii E.I. Structure of thin metal films. Minsk, Science and technik, 1968.

18. Hollend L. Deposition of thin films in vacuum. Moscow-Leningrad, State energetic issue, 1963.

19. Majssel L., Gleng R. Technology of thin film, Volume 1. Мoscow, Soviet radio, 1977.

20. Maslov V.P. Physical-technological problems of connection of precision parts of optoelectronic devices. Kyiv, Politeknika, 2012.

21. Tun R.E. Structure of thin films. Physics of thin films, Volume 1. Moscow, World, 1967.

22. Tochitskii E.I. Crystallization and procession of thin films. Minsk, Science and technik, 1976.

23. Kostuk V.P., Shkliarevskii I.N. Influence of conditions of preparation of silver and copper layers on their optical properties. Optics and spectroscopy. 1970. 29, № 1. P. 195-197.

24. Vishniakov Ia.D. Packing defects in the crystal structure. Moscow, Science, 1970.

25. Snopok B.A., Kostyukevich E.V., Lysenko S.I., Lytvyn P.M., Lytvyn O.S., Mamykin S.V., Zynio S.A., Shepeliavyi P.E., Kostyukevich S.A., Shirshov Yu.M., Venger E.F Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2001. 4, № 1. P. 56-69.

https://doi.org/10.15407/spqeo4.01.056

26. Kim N.-H., Choi M., Leem J.W., Yu J.S., Kim T.W., Kim T.-S., Byun K.M. Improved biomolecular detection based on a plasmonic nanoporous gold film fabricated by oblique angle deposition. Optics Express. 2015. 23, № 14. P. 18777-18785.

https://doi.org/10.1364/OE.23.018777

27. Dorozinsky G.V., Maslov V.P. Advanced design and technology for production of sensor elements in devices based on surface plasmon resonance. Machines.Technologies.Materials Journal, 2014. 11. P. 3-6.

28. Dorozinsky G., Doroshenko T., Maslov V. Influence of technological factors on sensitivity of analytical devices based on surface plasmon resonance. Journal of Sensor Technology. 2015. 5. P. 54-61.

https://doi.org/10.4236/jst.2015.52006

29. Dan'ko V.A., Dorozinsky G.V., Indutnyi I.Z., Myn'ko V.I., Ushenin Yu.V., Shepeliavyi P.E., Lukaniuk M.V., Korchovyi A.A., Khrystosenko R.V. Nanopatterning of Au chips for SPR refractometer using interference lithography and chalcogenide photoresist. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, № 4. P. 438-442.

https://doi.org/10.15407/spqeo18.04.438

30. Indutnyi I., Ushenin Y., Hegemann D., Vandenbossche M., Myn'ko V., Lukaniuk M., Shepeliavyi P., Korchovyi A., Khrystosenko R. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips. Nanoscale Research Letters. 2016. 11. P. 535.

https://doi.org/10.1186/s11671-016-1760-7

31. De Bruijn H.E., Kooyman R.P.H., Greve J. Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations. Applied Optics. 1992. 31, № 4. P. 440-442.

https://doi.org/10.1364/AO.31.0440_1

32. Davies J. Surface plasmon resonance - the technique and its applications to biomaterial processes. Nanobiology. 1994. 3. P. 5-16.

33. Salamon Z., Macieod H.A., Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochimica et biophysica acta. 1997. 1331. P. 131-152.

https://doi.org/10.1016/S0304-4157(97)00003-8

34. Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003. 377. P. 528-539.

https://doi.org/10.1007/s00216-003-2101-0

35. Lau K.-H.A., Tan L.-S., Tamada K., Sander M.S., Knoll W. Highly sensitive detection of processes occurringinside nanoporous anodic alumina templates: a waveguide optical study. J. Phys. Chem. B. 2004. 108, № 30. P. 10812-10818.

https://doi.org/10.1021/jp0498567

36. Koutsioubas A.G., Spiliopoulos N., Anastas-Sopoulos D., Vradis A.A., Priftis G.D. Nanoporous aluminaenhanced surface plasmon resonance sensors. J. Appl. Phys. 2008. 103, № 9. P. 094521-094527.

https://doi.org/10.1063/1.2924436

37. Kaganovich E.B., Manoilov E.G., Baziliuk I.R., Svechnikov S.V. Photoluminescence spectra of silicon nanocrystals. FTP. 2003. 37, № 3. P. 353-357.

https://doi.org/10.1134/1.1561529

38. Kaganovich E.B., Korbutyak D.V., Kryuchenko Yu.V., Kupchak I.M., Manoilov E.G., Sachenko A.V. Exciton states and photoluminescence in Ge quantum dots. Nanotechnology. 2007. 18. P. 295401-295405.

https://doi.org/10.1088/0957-4484/18/29/295401

39. Ushenin Yu.V., Khristosenko R.V., Samoilov A.V., Gromovoi Yu.S., Kaganovich E.B., Manoilov E.G., Kravchenko S.O., Snopok B.A. Thin films of porous alumina obtained by pulsed laser deposition, for surface plasmon polariton-sensory structures. Physics and chemistry of solid body. 2012. 13, № 1. P. 259-264.

40. Ushenin Yu.V., Khristosenko R.V., Samoilov A.V. and other. Optoelectronic sensor structures based on porous alumina films obtained by pulsed laser deposition. Optoelectronics and semiconductor technology. 2012. 47. P. 40-45.

41. Vakaruk T.E., Gromovoi Yu.S., Danko V.A. and other. Appliance of porous SiOx films in sensors based on surface plasmon resonance. Optoelectronics and semiconductor technology. 2013. 48. P. 89-95.

42. Kladko V.P., Gudymenko O.Y., Kriviy S.B., Litvin P.M., Kaganovich E.B., Krishchenko I.M., Manoilov E.G. Reflectometry study of nanoporous films with arrays of gold nanoparticles. Ukrainian Journal Physics. 2014. 59, № 9. P. 915-921.

https://doi.org/10.15407/ujpe59.09.0915

43. Chiu Nan-Fu, Tu Yi-Chen, Huang Teng-Yi. Enhanced sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers. Sensors. 2014. 14. P.170-187.

https://doi.org/10.3390/s140100170

44. Tanaka D., Shinohara S., Usukura E., Wang P., Okamoto K., Tamada K. High-sensitivity surface plasmon resonance sensors utilizing high-refractive-index silver nanoparticle sheets. Japanese Journal of Applied Physics. 2014. 53. P. 01AF01-01AF07.

https://doi.org/10.7567/JJAP.53.01AF01

45. Navarrete M.C., Díaz-Herrera N., González-Cano A., Esteban O. Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sensors and Actuators, B Chemie. 2014. 190. P. 881-885.

https://doi.org/10.1016/j.snb.2013.09.066

46. Esteban O., Naranjo F.B., Díaz-Herrera N., Valdueza-Felip S., Navarrete M.C., González-Cano A. Highsensitive SPR sensing with Indium Nitride as a dielectric overlay of optical fibers. Sensors and Actuators, B Chemie. 2011. 158. P. 372-376.

https://doi.org/10.1016/j.snb.2011.06.038

47. Yeom S.H., Kim O.G., Kang B.H., Kim K.J.; Yuan H., Kwon D.H.; Kim H.R.; Kang S.W. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt.Express. 2011. 19. P. 22882-22891.

https://doi.org/10.1364/OE.19.022882

48. Kostyukevych K.V., Khristosenko R.V., Shirshov Yu. M., Kostyukevych S.A., Samoylov A.V., Kalchenko V.I. Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2011. 14, № 3. P. 313-320.

https://doi.org/10.15407/spqeo14.03.313

49. Slepiсka P., Michaljaniсová I., Іvorсík V. Controlled biopolymer roughness induced by plasma and excimer laser treatment. Express polymer letters. 2013. 7, № 11. P. 950-958.

https://doi.org/10.3144/expresspolymlett.2013.92

50. Fouad S., Sabri N., Jamal Z.A.Z., Poopalan P. Enhanced sensitivity of Surface Plasmon Resonance Sensor Based on Bilayers of Silver-Barium Titanate. Journal of nano- and electronic physics. 2016. 8, № 4(2). P. 04085(5pp).

https://doi.org/10.21272/jnep.8(4(2)).04085

51. Dorozinsky G., Maslov V., Samoylov A., Ushenin Yu. Reducing measurement uncertainty of instruments based on the phenomenon of surface plasmon resonance. American Journal of Optics and Photonics. 2013. 1, № 3. P. 17-22.

https://doi.org/10.11648/j.ajop.20130103.12

52. Maslov V.P., Kachur N.V., Dorozinsky G.V. Investigation of Sensors Based on ITO Nanofilms in SPR-Devices. American Journal of Optics and Photonics. 2016. 3. P. 20-24.

https://doi.org/10.11648/j.ajop.20160403.11

53. Liedberg B., Nylander C., Lundstrom I. Biosensing with surface plasmon resonance-how it all started. Biosens. Bioelectron. 1995. 10. P. 1-9.

https://doi.org/10.1016/0956-5663(95)96965-2

54. Melendez J. L. et al. A commercial solution for surface plasmon sensing. Sens. Actuators B. 1996. 35. P. 212-216.

https://doi.org/10.1016/S0925-4005(97)80057-3

55. Schasfoort R. B.M., Tudos A. J. (eds.). Handbook of Surface Plasmon Resonance. London, Royal Society of Chemistry, 2008.

https://doi.org/10.1039/9781847558220

56. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu.Rev.Biophys.Biomol.Struct. 1997. 26. P. 541-566.

https://doi.org/10.1146/annurev.biophys.26.1.541

57. Karlsson R., Mol J. SPR for molecular interaction analysis: a review of emerging application areas. Recognit. 2004. 17. P. 151-161

https://doi.org/10.1002/jmr.660

58. Cooper M. A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002. 1. P. 515-528.

https://doi.org/10.1038/nrd838

59. Huang Y., Ho H.P., Kong S. K., Kabashin A. V. Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann. Phys. (Berlin). 2012. 524, № 11. P. 637-662.

https://doi.org/10.1002/andp.201200203

60. Dorozinsky G., Maslov V., Ushenin Yu. Sensor devices based on surface plasmon resonance. Kyiv, Politeknika, 2016.

61. Hlubina P., Duliakova M., Kadulova M., Ciprian D. Spectral interferometry-based surface plasmon resonance sensor. Optics Communications. 2015. 354. P. 240-245.

https://doi.org/10.1016/j.optcom.2015.06.011

62. Phan Q.-H., Yang P.-M., Lo Y.-L. Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry. Sensors and Actuators B: Chemical. 2015. 216. P. 247-254

https://doi.org/10.1016/j.snb.2015.04.050

63. Kalas B., Nador J., Agocs E., Saftics A., Kurunczi S., Fried M., Petrik P. Protein adsorption monitored by plasmon-enhanced semi-cylindrical Kretschmann ellipsometry. Applied Surface Science. 2017. 421. P. 585-592

https://doi.org/10.1016/j.apsusc.2017.04.064

64. Maslov V.P., Ushenin Yu.V., Dorozinsky G.V., Dorozinska H.V. Prospective Directions for the Development of Surface Plasmon Resonance Studies in Ukraine. Journal of Lasers, Optics and Photonics. 2018. 4, № 3. P. 1000166 (4 pp).

65. Kostyukevich S.O., Kostyukevich K.V., Hristosenko R.V., Koptyuh A.A., Moskalenko N.L., Lisyuk V.O., Pogoda V.I. Sensor poverhnevogo plazmonnogo rezonansu z chutlivim elementom na polimernij osnovi. Optoelektronika i poluprovodnikovaya tehnika. 2016. 51. P. 143-149. (in Ukrainian)

66. Hastings J.T., Guo J., Keathley P.D., Kumaresh P.B., Wei Y., Law S., Bachas L.G. .Optimal Self-referenced sensing using long- and short- range surface plasmons. Optics express. 2007. 15, № 26. P. 17661-17672.

https://doi.org/10.1364/OE.15.017661

67. Maharana P. K., Srivastava T., Jha R. Low index dielectric mediated surface plasmon resonance sensor based on graphenee for near infrared measurements. Journal of Physics D: Applied Physics. 2014. 47. P. 385102 (11pp).

https://doi.org/10.1088/0022-3727/47/38/385102

68. Mitsushio M., Nagaura A., Yoshidome T., Higo M. Molecular selectivity development of Teflon® AF1600-coated gold-deposited surface plasmon resonance-based glass rod sensor. Progress in Organic Coatings. 2015. 79. P. 62-67.

https://doi.org/10.1016/j.porgcoat.2014.11.003

69. Lofas S. et al. Surface plasmon resonance biosensors of antibody. Biosens. Bioelectron. 2007. 22. P. 1020-1026.

https://doi.org/10.1016/j.bios.2006.04.021

70. Kaiki Tsugimura et al. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors. 12th International Conference on Nanomolecular Electronics (ICNME). 2017. 924. P. 012015 (9 pp).

https://doi.org/10.1088/1742-6596/924/1/012015

71. Makhneva E., Obrusník A., Farka Z., Skládal P., Vandenbossche M., Hegemann D., Zajíčková L. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing. Japanese Journal of Applied Physics. 2017. 57, № 1S. P. 01AG06

https://doi.org/10.7567/JJAP.57.01AG06

72. Kovař D, Makhneva E, Dorozinsky G, Manakhov A, Zajičková L, Skladal P. Study of carboxy-rich plasma polymer for biosensors. Proceedings of VII International conference on innovations in thin film processing and characterization (ITFPC-2015). 2015. 17. P. 131.

73. Seba S. Varghese, Sunil Lonkara, K.K. Singh, Sundaram Swaminathan, Ahmed Abdala. Recent advances in graphenee based gas sensors. Sensors and Actuators B. 2015. 218. P. 160-183.

https://doi.org/10.1016/j.snb.2015.04.062


Г.В. Дорожинський, О.М. Ляпін, Г.В. Дорожинська, В.П. Маслов

СТАН ТА ПРОБЛЕМИ РОЗРОБКИ ЧУТЛИВИХ ЕЛЕМЕНТІВ ПРИЛАДІВ НА ОСНОВІ ЯВИЩА ПОВЕРХНЕВОГО ПЛАЗМОННОГО РЕЗОНАНСУ (ОГЛЯД)

В огляді наведено основні напрямки удосконалення технології та конструкції існуючих сенсорів на основі явища поверхневого плазмонного резонансу (ППР) для збільшення їх чутливості і точності вимірювання. Показано, що зменшення шорсткості поверхні плазмон-несучого шару сенсора і застосування додаткового діелектричного шару з розвиненою поверхнею, дозволяє більш ніж в два рази підвищити чутливість за рахунок збільшення площі поверхні взаємодії сенсора з досліджуваною речовиною. Основним технічним прийомом для зменшення шорсткості поверхні є термічний відпал, а найкращий результат досягається при температурі 120 °С. У більшості випадків як діелектричний шар використовують оксиди металів Al2O3, TiO2, SiOx і ZnO, що дозволяє досягти межі детектування зміни показника заломлення досліджуваної речовини близько 1·10–9. Це на порядок нижче, ніж в існуючих комерційних аналітичних приладах, які працюють на основі явища поверхневого плазмонного резонансу. В огляді наведено перспективні напрямки розвитку сенсорів ППР, такі як застосування багатошарових графенових покриттів і полімерних шарів, отриманих полімеризацією у високочастотній плазмі інертного газу. Подальший розвиток сенсорів на основі поверхневого плазмонного резонансу, на нашу думку, буде спрямований на збільшення селективності, зносостійкості поверхні чутливих елементів, а також на розробку методів регенерації рецепторів для багаторазового використання чутливих елементів.

Ключові слова: поверхневий плазмонний резонанс, сенсори, технологія, матеріали покриттів