https://doi.org/10.15407/jopt.2018.53.038
Optoelectron. Semicond. Tech. 53, 38-59 (2018)
V.I. Chegel, A.M. Lopatynskyi
MOLECULAR PLASMONICS – A NOVEL RESEARCH FIELD IN MATERIALS SCIENCE AND SENSING. APPLICATIONS AND THEORETICAL BACKGROUND (REVIEW)
This review systematizes literature data and results of own researches in the novel scientific field – molecular plasmonics. The spectrum of applications has been summarized for molecular plasmonics that investigates interactions between molecules and surface plasmons of metallic nanostructures, provides a broad range of possibilities for detection, visualization, control, delivery and heating the biological molecules, and offers a number of powerful tools for biological and medical researches. The possibilities and recent achievements in the direction of creation of surface plasmon resonance sensors have been described. The applications of molecular plasmonics proposed in the literature for the fields of materials science, nanoscopy, photothermal therapy and nano-manipulation have been analyzed. In particular, because of the characteristic nanoscale confinement and amplification of electromagnetic fields, metallic nanoparticles can be used to measure biological events, for fluorescence regulation, and investigations at the single molecule level. An important application of molecular plasmonics methods is the study of various properties of nanomaterials and nanostructured systems, specifically, nanostructured materials with unique optical properties, the socalled metamaterials, especially those with the reversible variation of physical characteristics and the dynamic change of optical parameters. Additionally, plasmon-enhanced thermal effects are fundamental for phototherapy and lightactivated drug delivery systems that can provide tools for disease control. The theoretical basis of surface plasmon resonance methods with description of mathematical models for calculation of optical responses of plasmon-molecular nanosystems based on thin metal films and nanostructures is presented. The comparative analysis of approaches for the theoretical calculation of multilayered systems based on the light scattering matrix and Green's function in the representation of the electromagnetic field by Lippmann-Schwinger, as well as the apparatus of the Mie scattering theory and the finite-difference time-domain method for metallic nanostructures is given.
Keywords: surface plasmon-polariton resonance, localized surface plasmon resonance, molecule, sensor, Green’s function, Mie theory, finite-difference time-domain method.
References
1. Van Duyne R.P. Molecular plasmonics. Science. 2004. 306, No 5698. P. 985-986.
https://doi.org/10.1126/science.1104976
2. Zayats M., Raitman O.A., Chegel V.I. et al. Probing antigen−antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: Development of cholera toxin sensors. Analyt. Chem. 2002. 74, No 18. P. 4763-4773.
https://doi.org/10.1021/ac020312f
3. Grigorenko A.N., Roberts N.W., Dickinson M.R. et al. Nanometric optical tweezers based on nanostructured substrates. Nat. Photon. 2008. 2, No 6. P. 365-370.
https://doi.org/10.1038/nphoton.2008.78
4. Chegel V.I. Vpliv dielektrichnih harakteristik seredovisha ta zovnishnih faktoriv na parametri fizichnih ta biologichnih sensoriv na osnovi poverhnevogo plazmonnogo rezonansu: dis. ... kand. fiz.-mat. nauk: 01.04.01. NAN Ukrayini, In-t fiziki napivprovidnikiv, Kiyiv, 2002. (in Ukrainian)
5. Lavine B.K., Westover D.J., Kaval N. et al. Swellable molecularly imprinted polyN-(N-propyl) acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy. Talanta. 2007. 72, No 3. P. 1042-1048.
https://doi.org/10.1016/j.talanta.2006.12.046
6. Gabai R., Sallacan N., Chegel V. et al. Characterization of the swelling of acrylamidophenylboronic acid -acrylamide hydrogels upon interaction with glucose by Faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM) and surface plasmon resonance (SPR) experiments. J. Phys. Chem. B. 2001. 105, No 34. P. 8196-8202.
https://doi.org/10.1021/jp0111618
7. Holland W.R., Hall D.G. Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances. Phys. Rev. B. 1983. 27, No 12. P. 7765-7768.
https://doi.org/10.1103/PhysRevB.27.7765
8. Lyon L.A., Musick M.D., Smith P.C. et al. Surface plasmon resonance of colloidal Au-modified gold films. Sens. Actuators, B. 1999. 54, No 1. P. 118-124.
https://doi.org/10.1016/S0925-4005(98)00329-3
9. Lyon L.A., Musick M.D., Natan M.J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 1998. 70, No 24. P. 5177-5183.
https://doi.org/10.1021/ac9809940
10. Schultz D.A. Plasmon resonant particles for biological detection. Curr. Opin. Biotechnol. 2003. 14, No 1. P. 13-22.
https://doi.org/10.1016/S0958-1669(02)00015-0
11. He L., Musick M.D., Nicewarner S.R. et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 2000. 122, No 38. P. 9071-9077.
https://doi.org/10.1021/ja001215b
12. Zayats M., Pogorelova S.P., Kharitonov A.B. Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem. Eur. J. 2003. 9, No 24. P. 6108-6114.
https://doi.org/10.1002/chem.200305104
13. Lioubashevski O., Chegel V.I., Patolsky F. et al. Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles: A surface plasmon resonance and electrochemical study. J. Amer. Chem. Soc. 2004. 126, No 22. P. 7133-7143.
https://doi.org/10.1021/ja049275v
14. Raitman O.A., Katz E., Willner I. et al. Photonic transduction of a three-state electronic memory and of electrochemical sensing of NADH using surface plasmon resonance spectroscopy. Angew. Chem. Int. Ed. 2001. 40, No 19. P. 3649-3652.
https://doi.org/10.1002/1521-3773(20011001)40:19<3649::AID-ANIE3649>3.0.CO;2-Z
15. Tian L., Qiu J., Zhou Y.-C. et al. Application of polypyrrole/GOx film to glucose biosensor based on electrochemical-surface plasmon resonance technique. Microchim. Acta. 2010. 169. P. 269-275.
https://doi.org/10.1007/s00604-010-0344-y
16. Kang X., Cheng G., Dong S. A novel electrochemical SPR biosensor. Electrochem. Commun. 2001. 3. P. 489-493.
https://doi.org/10.1016/S1388-2481(01)00170-9
17. Wang S., Boussaad S., Wong S. et al. High-sensitivity Stark spectroscopy obtained by surface plasmon resonance measurement. Anal. Chem. 2000. 72. P. 4003-4008.
https://doi.org/10.1021/ac000504f
18. Heaton R.J., Peterson A.W., Georgiadis R.M. Electrostatic surface plasmon resonance: Direct electric fieldinduced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches. Proc. Natl. Acad. Sci. U.S.A. 2001. 98. P. 3701-3704.
https://doi.org/10.1073/pnas.071623998
19. Morrow R., McKenzie D.R., Bilek M.M.M. et al. Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance. Phys. B: Phys. Cond. Matt. 2007. 394. P. 203-207.
https://doi.org/10.1016/j.physb.2006.12.054
20. Lee K.-S., El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B. 2006. 110, No 39. P. 19220-19225.
https://doi.org/10.1021/jp062536y
21. Yan S., Wang Y., Wen T. et al. A study on the optical absorption properties of dielectric-mediated gold nanoshells. Physica E: Low-dimensional Systems and Nanostructures. 2006. 33, No 1. P. 139-143.
https://doi.org/10.1016/j.physe.2006.01.009
22. Xu H., Kall M. Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sensors and Actuators B: Chemical. 2002. 87, No 2. P. 244-249.
https://doi.org/10.1016/S0925-4005(02)00243-5
23. Westcott S.L., Jackson J.B., Radloff C. et al. Relative contributions to the plasmon line shape of metal nanoshells. Phys. Rev. B. 2002. 66. 155431.
https://doi.org/10.1103/PhysRevB.66.155431
24. Haes A.J., Zou S., Schatz G.C. et al. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. The Journal of Physical Chemistry B. 2004. 108, No 1. P. 109-116.
https://doi.org/10.1021/jp0361327
25. Murray W.A., Auguie B., Barnes W.L. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. The Journal of Physical Chemistry C. 2009. 113, No 13. P. 5120-5125.
https://doi.org/10.1021/jp810322q
26. Malinsky M.D., Kelly K.L., Schatz G.C. et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 2001. 123, No 7. P. 1471-1482.
https://doi.org/10.1021/ja003312a
27. Khlebtsov B.N., Khlebtsov N.G. Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment. Journal of Quantitative Spectroscopy and Radiative Transfer. 2007. 106, No1. P. 154-169.
https://doi.org/10.1016/j.jqsrt.2007.01.015
28. Khlebtsov N.G., Bogatyrev V.A., Khlebtsov B.N. et al. A multilayer model for gold nanoparticle bioconjugates: Application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J. 2003. 65, No 5. P. 622-635.
29. Khlebtsov N.G. Optical models for conjugates of gold and silver nanoparticles with biomacromolecules. Journal of Quantitative Spectroscopy and Radiative Transfer. 2004. 89, No 1-4. P. 143-153.
https://doi.org/10.1016/j.jqsrt.2004.05.018
30. Wu D., Xu X., Liu X. Tunable near-infrared optical properties of three-layered metal nanoshells. J. Chem. Phys. 2008. 189, No 7. P. 074711.
https://doi.org/10.1063/1.2971179
31. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin: Springer-Verlag, 1995.
https://doi.org/10.1007/978-3-662-09109-8
32. Mock J.J., Smith D.R., Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003. 3. P. 485-491.
https://doi.org/10.1021/nl0340475
33. Mock J.J., Barbic M., Smith D.R. et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002. 116, No 15. P. 6755-6759.
https://doi.org/10.1063/1.1462610
34. Su K.H., Wei Q.H., Zhang X. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003. 3, No 8. P. 1087-1090.
https://doi.org/10.1021/nl034197f
35. Dirix Y., Bastiaansen C., Caseri W. et al. Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 1999. 11, No 3. P. 223-227.
https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO;2-J
36. Canfield B.K., Kujala S., Kauranen M. et al. Remarkable polarization sensitivity of gold nanoparticle arrays. Appl. Phys. Lett. 2005. 86, No 18. P. 183109-183111.
https://doi.org/10.1063/1.1924886
37. Malinsky M.D., Kelly K.L., Schatz G.C. et al. Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B. 2001. 105, No 12. P. 2343-2350.
https://doi.org/10.1021/jp002906x
38. Haynes C.L., Van Duyne R.P. Dichroic optical properties of extended nanostructures fabricated using angleresolved nanosphere lithography. Nano Lett. 2003. 3, No 7. P. 939-943.
https://doi.org/10.1021/nl0342287
39. Riboh J.C., Haes A.J., McFarland A.D. et al. A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B. 2003. 107, No 8. P. 1772-1780.
https://doi.org/10.1021/jp022130v
40. Chumanov G., Malinich S. Coupled planar silver nanoparticle arrays as refractive index sensors. J. Opt. A: Pure Appl. Opt. 2006. 8. P. 144-147.
https://doi.org/10.1088/1464-4258/8/4/S14
41. Yonzon C.R., Jeoung E., Zou S.L. et al. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc. 2004. 126, No 39. P. 12669-12676.
https://doi.org/10.1021/ja047118q
42. Haes A.J., Chang L., Klein W.L. et al. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 2005. 127, No 7. P. 2264-2271.
https://doi.org/10.1021/ja044087q
43. Sonnichsen C., Reinhard B.M., Liphardt J. et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005. 23, No 6. P. 741-745.
https://doi.org/10.1038/nbt1100
44. Pryce I.M., Kelaita Y.A., Aydin K. et al. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano. 2011. 5, No 10. P. 8167-8174.
https://doi.org/10.1021/nn202815k
45. Haes A.J., Zou S., Zhao J. et al. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Amer. Chem. Soc. 2006. 128, No 33. P. 10905-10914.
https://doi.org/10.1021/ja063575q
46. Wiederrecht G.P., Wurtz G.A., Hranisavljevic J. Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles. Nano Lett. 2004. 4, No 11. P. 2121-2125.
https://doi.org/10.1021/nl0488228
47. Fofang N.T., Park T.H., Neumann O. et al. Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-Jaggregate complexes. Nano Lett. 2008. 8, No 10. P. 3481-3487.
https://doi.org/10.1021/nl8024278
48. Ni W., Ambjornsson T., Apell S.P. et al. Observing plasmonic - molecular resonance coupling on single gold nanorods. Nano Lett. 2009. 10, No 1. P. 77-84.
https://doi.org/10.1021/nl902851b
49. Zheng Y.B., Juluri B.K., Jensen L.L. et al. Dynamically tuning plasmon-exciton coupling in arrays of nanodiskJ-aggregate complexes. Adv. Mater. 2010. 22, No 32. P. 3603-3607.
https://doi.org/10.1002/adma.201000251
50. Chumanov G., Sokolov K., Gregory B.W. et al. Colloidal metal films as a substrate for surface-enhanced spectroscopy. The Journal of Physical Chemistry. 1995. 99, No 23. P. 9466-9471.
https://doi.org/10.1021/j100023a025
51. Tam F., Goodrich G.P., Johnson B.R. et al. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007. 7, No 2. P. 496-501.
https://doi.org/10.1021/nl062901x
52. Xu S., Cao Y., Zhou J. et al. Plasmonic enhancement of fluorescence on silver nanoparticle films. Nanotechnology. 2011. 22, No 27. P. 275715.
https://doi.org/10.1088/0957-4484/22/27/275715
53. Kuhn S., Hеkanson U., Rogobete L. et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006. 97, No 1. P. 017402.
https://doi.org/10.1103/PhysRevLett.97.017402
54. Zhang J., Fu Y., Chowdhury M.H. et al. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 2007. 7, No 7. P. 2101-2107.
https://doi.org/10.1021/nl071084d
55. Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y. et al. Synthesis and properties of silver nanoparticles: Advances and prospects. Russian Chem. Rev. 2008. 77, No 3. P. 233-257.
https://doi.org/10.1070/RC2008v077n03ABEH003751
56. Chen Y., Munechika K., Ginger D.S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007. 7, No 3. P. 690-696.
https://doi.org/10.1021/nl062795z
57. Geddes C.D., Parfenov A., Roll D. et al. Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir. 2003. 19, No 15. P. 6236-6241.
https://doi.org/10.1021/la020930r
58. Gartia M.R., Hsiao A., Sivaguru M. et al. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology. 2011. 22, No 36. P. 365203.
https://doi.org/10.1088/0957-4484/22/36/365203
59. Drozdowicz-Tomsia K., Goldys E.M. Gold and silver nanowires for fluorescence enhancement. Nanowires - Fundamental Research. Rijeka, Croatia: InTech, 2011. P. 309-332.
60. Kruszewski S., Wybranowski T., Cyrankiewicz M. et al. Enhancement of FITC fluorescence by silver colloids and silver island films. Acta Phys. Polon. 2008. 113, No 6. P. 1599-1608.
https://doi.org/10.12693/APhysPolA.113.1599
61. Sorokin A.V., Zabolotskii A.A., Pereverzev N.V. et al. Metal-enhanced fluorescence of pseudoisocyanine Jaggregates formed in layer-by-layer assembled films. The Journal of Physical Chemistry C. 2015. 119, No 5. P. 2743-2751.
https://doi.org/10.1021/jp5102626
62. Sorokin A.V., Zabolotskii A.A., Pereverzev N.V. et al. Plasmon controlled exciton fluorescence of molecular aggregates. The Journal of Physical Chemistry C. 2014. 118, No 14. P. 7599-7605.
https://doi.org/10.1021/jp412798u
63. Dragan A.I., Geddes C.D. Excitation volumetric effects (EVE) in metal-enhanced fluorescence. Phys. Chem. Chem. Phys. 2011. 13, No 9. P. 3831-3838.
https://doi.org/10.1039/c0cp01986k
64. Kuhn S., Hakanson U., Rogobete L. et al. On-command enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna. Phys. Rev. Lett. 2005. 97. P. 017402.
https://doi.org/10.1103/PhysRevLett.97.017402
65. Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Exp. 2007. 21. P. 14266-14274.
https://doi.org/10.1364/OE.15.014266
66. Kang X., Jin Y., Cheng G. et al. In situ analysis of electropolymerization of aniline by combined electrochemistry and surface plasmon resonance. Langmuir. 2002. 18. P. 1713-1718.
https://doi.org/10.1021/la0155303
67. Chegel V., Raitman O., Katz E. et al. Photonic transduction of electrochemically-triggered redox-functions of polyaniline films using surface plasmon resonance spectroscopy. Chem. Commun. 2001. P. 883-884.
https://doi.org/10.1039/b101243f
68. Damos F.S., Luz R.C.S., Kubota L.T. Study of poly (methylene blue) ultrathin films and its properties by electrochemical surface plasmon resonance. Journal of Electroanalytical Chemistry. 2005. 581, No 2. P. 231-240.
https://doi.org/10.1016/j.jelechem.2005.04.021
69. Akkilic N., Mustafaev M., Chegel V. Conformational dynamics of poly(acrylic acid)-bovine serum albumin polycomplexes at different pH conditions. Macromolecular Symposia. 2008. 269, No 1. P. 138-144.
https://doi.org/10.1002/masy.200850917
70. Templeton A.C., Pietron J.J., Murray R.W. et al. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B. 2000. 104, No 3. P. 564-570.
https://doi.org/10.1021/jp991889c
71. Juluri B.K., Zheng Y.B., Ahmed D. et al. Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles. J. Phys. Chem. C. 2008. 112, No 19. P. 7309-7317.
https://doi.org/10.1021/jp077346h
72. Zayats M., Kharitonov A.B., Pogorelova S.P. et al. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003. 125, No 51. P. 16006-16014.
https://doi.org/10.1021/ja0379215
73. Austin D., Mullin N., Bismuto A. et al. Transmission properties of plasmonic metamaterial quantum cascade lasers. IEEE Photonics Technol. Lett. 2010. 22, No 16. P. 1217-1219.
https://doi.org/10.1109/LPT.2010.2052595
74. Ren M., Jia B., Ou J.-Y. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 2011. 23, No 46. P. 5540-5544.
https://doi.org/10.1002/adma.201103162
75. Gu Y., Li Q., Xiao J. et al. Plasmonic metamaterials for ultrasensitive refractive index sensing at near infrared. J. Appl. Phys. 2011. 109, No 2. P. 023104.
https://doi.org/10.1063/1.3533953
76. Kabashin A.V., Evans P., Pastkovsky S. et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials. 2009. 8, No 11. P. 867-871.
https://doi.org/10.1038/nmat2546
77. Zhang X., Sun B., Friend R. et al. Metallic photonic crystals based on solution-processible gold nanoparticles. Nano Lett. 2006. 6, No 4. P. 651-655.
https://doi.org/10.1021/nl052361o
78. Malynych S., Chumanov G. Light-induced coherent interactions between silver nanoparticles in twodimensional arrays. J. Amer. Chem. Soc. 2003. 125, No 10. P. 2896-2898.
https://doi.org/10.1021/ja029453p
79. Aslan K., Leonenko Z., Lakowicz J.R. et al. Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. The Journal of Physical Chemistry B. 2005. 109, No 8. P. 3157-3162.
https://doi.org/10.1021/jp045186t
80. Zheng Y.B., Yang Y.-W., Jensen L. et al. Active molecular plasmonics: Controlling plasmon resonances with molecular switches. Nano Lett. 2009. 9, No 2. P. 819-825.
https://doi.org/10.1021/nl803539g
81. Jonsson M.P., Dahlin A.B., Feuz L. et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Analyt. Chem. 2010. 82, No 5. P. 2087-2094.
https://doi.org/10.1021/ac902925e
82. Shim J.-Y., Gupta V.K. Reversible aggregation of gold nanoparticles induced by pH dependent conformational transitions of a self-assembled polypeptide. Journal of Colloid and Interface Science. 2007. 316, No 2. P. 977-983.
https://doi.org/10.1016/j.jcis.2007.08.021
83. Iyer K.S., Zdyrko B., Malynych S. et al. Reversible submergence of nanoparticles into ultrathin block copolymer films. Soft Matter. 2011. 7, No 6. P. 2538-2542.
https://doi.org/10.1039/c0sm01156h
84. Otsuka H., Akiyama Y., Nagasaki Y. et al. Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly (ethylene glycol). J. Amer. Chem. Soc. 2001. 123, No 34. P. 8226-8230.
https://doi.org/10.1021/ja010437m
85. Estrada L.C., Gratton E. 3D nanometer images of biological fibers by directed motion of gold nanoparticles. Nano Lett. 2011. 11, No 11. P. 4656-4660.
https://doi.org/10.1021/nl2022042
86. Elliott A.M., Stafford R.J., Schwartz J. et al. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med. Phys. 2007. 34, No 7. P. 3102-3108.
https://doi.org/10.1118/1.2733801
87. Stern J. M., Stanfield J., Kabbani W. et al. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 2008. 179, No 2. P. 748-753.
https://doi.org/10.1016/j.juro.2007.09.018
88. El-Sayed I.H., Huang X., El-Sayed M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006. 239, No 1. P. 129-135.
https://doi.org/10.1016/j.canlet.2005.07.035
89. Luo Y.L., Shiao Y.S., Huang Y.F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano. 2011. 5, No 10. P. 7796-7804.
https://doi.org/10.1021/nn201592s
90. Miao X.Y., Lin L.Y. Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Opt. Lett. 2007. 32, No 3. P. 295-297.
https://doi.org/10.1364/OL.32.000295
91. Lopatynskyi A.M., Lopatynska O.G., Guiver M.D. et al. Factor of interfacial potential for the surface plasmonpolariton resonance sensor response. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2008. 11, No 4. P. 329-336.
https://doi.org/10.15407/spqeo11.04.329
92. Chegel V., Chegel Yu., Guiver M.D. et al. 3D-quantification of biomolecular covers using surface plasmonpolariton resonance experiment. Sensors and Actuators B: Chemical. 2008. 134, No 1. P. 66-71.
https://doi.org/10.1016/j.snb.2008.04.012
93. Azzam R., Bashara N.; per. s angl. pod red. A. V. Rzhanova, K. K. Svitasheva. Ellipsometriya i polyarizovannyj svet. Moskva: Mir, 1981. (in Russian)
94. Born M., Volf E.; per. s angl. S. N. Breusa, A. I. Golovashkina, A. A. Shubina. Osnovy optiki. Moskva: Nauka, 1973. (in Russian)
95. Lofas S., Malmqvist M., Ronnberg I. et al. Bioanalysis with surface plasmon resonance. Sensors and Actuators B: Chemical. 1991. 5, No 1-4. P. 79-84.
https://doi.org/10.1016/0925-4005(91)80224-8
96. Matsubara K., Kawata S., Minami S. Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 1988. 27, No 6. P. 1160-1163.
https://doi.org/10.1364/AO.27.001160
97. Advincula R., Aust E., Meyer W. In situ investigations of polymer self-assembly solution adsorption by surface plasmon spectroscopy. Langmuir. 1996. 12, No 15. P. 3536-3540.
https://doi.org/10.1021/la9601622
98. Johansen K., Lundström I., Liedberg B. Sensitivity deviation: instrumental linearity errors that influence concentration analyses and kinetic evaluation of biomolecular interactions. Biosensors and Bioelectronics. 2000. 15, No 9. P. 5003-509.
https://doi.org/10.1016/S0956-5663(00)00109-3
99. Borschagovski E.G., Gecko O.M., Lozovski V.Z. Ellipsometry of ultra thin films. Opt. Spectrosc. 1989. 66. P. 1345-1348.
100. Bobbert P.A., Vlieger J. Light scattering by a sphere on a substrate. Physica A. 1986. 137, No 1. P. 209-242.
https://doi.org/10.1016/0378-4371(86)90072-5
101. Shirshov Yu.M., Chegel V.I., Subbota Yu.V. Determination of dielectric constant and thickness of thin biological layers using surface plasmon resonance. Proc. SPIE. 1995. 2648. P. 118-123.
102. Lozovski V. Susceptibilities of nano-particles at the surface of a solid. Low-dimensional Systems and Nanostructures. Physica E. 2001. 9, No 4. P. 642-651.
https://doi.org/10.1016/S1386-9477(00)00291-5
103. Keller O. Local fields in the electrodynamics of mesoscopic media. Phys. Rep. 1996. 268, No 2. P. 85-262.
https://doi.org/10.1016/0370-1573(95)00059-3
104. Lopatynskyi A., Lopatynska O., Guo L.J. Localized surface plasmon resonance biosensor: theoretical study of sensitivity - extended Mie approach. Part I. IEEE Sensors Journal. 2011. 11, No 2. P. 361-369.
https://doi.org/10.1109/JSEN.2010.2057418
105. Dmitruk N.L., Goncharenko A.V., Venger E.F. Optics of Small Particles and Composite Media. Kyiv: Naukova dumka, 2009.
106. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: WileyInterscience, 1983.
107. Johnson P.B., Christy R.W. Optical constants of the noble metals. 1972. Phys. Rev. B. 6. P. 4370-4379.
https://doi.org/10.1103/PhysRevB.6.4370
108. Lide R.D. (Ed.) Handbook of Chemistry and Physics, 84th ed. Boca Raton, FL: CRC Press, 2004.
109. Gusev A.I., Rempel A.A. Nanokristallicheskie materialy. Moskva: FIZMATLIT, 2001. (in Russian)
110. Chen K.P., Drachev V.P., Borneman J.D. et al. Drude relaxation rate in grained gold nanoantennas. Nano Lett. 2010. 10, No 3. P. 916-922.
https://doi.org/10.1021/nl9037246
111. Fox M. Optical Properties of Solids. New York: Oxford University Press, 2001.
112. Bass M. (Ed.) Handbook of Optics. New York: McGraw-Hill, 1995.
113. Kung F.W.L. Modeling of electromagnetic wave propagation in printed circuit board and related structures: PhD thesis. Universiti Telekom Sdn Bhd, Multimedia University. Melaka, Malaysia, 2003.
114. Vial A., Grimault A., Macias D. et al. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. 2005. Phys. Rev. B. 71. P. 085416.
https://doi.org/10.1103/PhysRevB.71.085416
115. Schneider J.B. Understanding the finite-difference time-domain method. School of Electrical Engineering and Computer Science, Washington State University, 2010. URL: http://www.eecs.wsu.edu/~schneidj/ufdtd (Last accessed: 13.11.2018).
116. Klimov V. V. Nanoplazmonika. Moskva: FIZMATLIT, 2009. (in Russian)
В.І. Чегель, А.М. Лопатинський
МОЛЕКУЛЯРНА ПЛАЗМОНІКА – НОВИЙ НАПРЯМОК ДЛЯ ДОСЛІДЖЕНЬ У МАТЕРІАЛОЗНАВСТВІ ТА СЕНСОРИЦІ. ЗАСТОСУВАННЯ ТА ТЕОРЕТИЧНЕ ПІДҐРУНТЯ (ОГЛЯД)
В огляді систематизованo літературні дані та дані власних досліджень у новому науковому напрямку – молекулярній плазмоніці. Узагальнено спектр областей застосування методів молекулярної плазмоніки, що досліджує взаємодії між молекулами та поверхневими плазмонами металевих наноструктур, дає широкі можливості для виявлення, візуалізації, керування, доставки і нагрівання біологічних молекул та пропонує ряд потужних інструментів для біологічних та медичних досліджень. Описано можливості та останні здобутки в напрямку створення сенсорів на основі поверхневого плазмонного резонансу. Проаналізовано запропоновані в літературі застосування молекулярної плазмоніки в областях матеріалознавства, наноскопії, фототеплової терапії та наноманіпуляції. Зокрема, внаслідок характерного нанорозмірного обмеження та підсилення електромагнітних полів металеві наночастинки можуть бути використані для вимірювання біологічних подій, регулювання флюоресценції та досліджень на рівні окремої молекули. Важливим застосуванням методів молекулярної плазмоніки є дослідження різноманітних властивостей наноматеріалів та наноструктурованих систем, а саме, наноструктурованих матеріалів з унікальними оптичними властивостями, так званих метаматеріалів, особливо зі зворотним варіюванням фізичних характеристик та динамічною зміною оптичних параметрів. Крім того, плазмонно-підсилені теплові ефекти є базовими для фототеплової терапії та активованих світлом систем доставки ліків, які можуть надати інструментарій для боротьби з хворобами. Викладено теоретичні основи методів поверхневого плазмонного резонансу з описом математичних моделей для розрахунку оптичних відгуків плазмонно-молекулярних наносистем на основі тонких металевих плівок та наноструктур. Наведено порівняльний аналіз підходів для теоретичного розрахунку багатошарових систем на основі матриці розсіяння світла та функції Гріна у представленні електромагнітного поля за Ліппманом– Швінгером, а також апаратів теорії розсіяння Мі і методу скінченних різниць у часовій області для металевих наноструктур.
Ключові слова: поверхневий плазмон-поляритонний резонанс, локалізований поверхневий плазмонний резонанс, молекули, сенсори, функція Гріна, теорія Мі, метод скінченних різниць у часовій області.