https://doi.org/10.15407/jopt.2016.51.007
Optoelectron. Semicond. Tech. 51, 7-30 (2016)
Yu.V. Kryuchenko, D.V. Korbutyak
HYBRID NANOSTRUCTURES WITH QUANTUM DOTS A2B6 AND METAL NANOPARTICLES (REVIEW)
The current state of development of various hybrid semiconductor-metal nanostructures and studying their luminescent properties have been analyzed. These structures exhibit extraordinary optical characteristics caused by simultaneous existence of localized surface plasmons in metallic nanoparticles and excitons in semiconductor quantum dots and their resonant interaction. The current state of investigating the blinking of single quantum dots and quantum dots in the vicinity of metal nanoparticles has been also reviewed.
Keywords: semiconductor quantum dots, metal nanoparticles, hybrid nanostructures, excitons, local surface plasmons, radiation efficiency, photoluminescence.
References
1. Kamarulzaman N., Chayed N.F., Badar N. MgO nanoparticles via a simple solid-state reaction, AIP Conf. Proc. 2016. 1711. P. 040004.
https://doi.org/10.1063/1.4941626
2. Sotiriou G.A., Blattmann C.O., Pratsinis S.E. Gas-phase synthesis of silver nanoparticles for plasmonic biosensors, Mater. Res. Soc. Symp. Proc. 2013. 1509. DOI: http://dx.doi.org/10.1557/opl.2013.527.
https://doi.org/10.1557/opl.2013.527
3. Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Adv. Phys.: X. 2016. 1. P. 81-100.
https://doi.org/10.1080/23746149.2016.1142829
4. Feldman М. Nanolitography. Cambridge: Woodhead publishing, 2013. 592 p.
5. Rouleau C.M., Shih C.-Y., Wu C., Zhigilei L.V., Puretzky A.A., Geohegan D.B. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations. Appl. Phys. Lett. 2014. 104. P. 193106.
https://doi.org/10.1063/1.4876601
6. Levi D., Zasyat M. The Sol-Gel Handbook - Synthesis, Characterization, and Applications. Berlin: Wiley-VCH, 2015. 1616 p.
7. Groeneveld E., Donega C.M. The Challenge of Colloidal Nanoparticle Synthesis, Chapter 6 in: Nanoparticles: Workhorses of Nanoscience, Celso de Mello Donegá (ed.). Berlin, Heidelberg: Springer-Verlag, 2014. P. 145- 189.
https://doi.org/10.1007/978-3-662-44823-6_6
8. Donega C.M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011. 40. P. 1512-1546.
https://doi.org/10.1039/C0CS00055H
9. Gong K., Martin J.E., Shea-Rohwer L.E., Lu P., Kelley D.F. Radiative lifetimes of zincblende CdSe/CdS quantum dots. J. Phys. Chem. C. 2015. 119. P. 2231-2238.
https://doi.org/10.1021/jp5118932
10. Pradhan N., Sarma D.D. Advances in light-emitting doped semiconductor nanocrystals. J. Phys. Chem. Lett. 2011. 2. P. 2818-2826.
https://doi.org/10.1021/jz201132s
11. Pereira R.N., Almeida A.J. Doped semiconductor nanoparticles synthesized in gas-phase plasmas. J. Phys. D: Appl. Phys. 2015. 48. P. 314005.
https://doi.org/10.1088/0022-3727/48/31/314005
12. Kwon S.G., Chattopadhyay S., Koo B. et al. Oxidation induced doping of nanoparticles revealed by in situ X-ray adsorption studies. Nano Lett. 2016. 16, No. 6. P. 3738-3747.
https://doi.org/10.1021/acs.nanolett.6b01072
13. Peng Z., Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009. 4. P. 143-164.
https://doi.org/10.1016/j.nantod.2008.10.010
14. Niu W., Xu G. Crystallographic control of noble metal nanocrystals. Nano Today. 2011. 6. P. 265-285.
https://doi.org/10.1016/j.nantod.2011.04.006
15. Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-сontrolled synthesis of metal nanocrystals: Simple сhemistry meets complex physics? Angew. Chem. Int. Ed. 2009. 48. P. 60-103.
https://doi.org/10.1002/anie.200802248
16. You H., Yang S., Dinga B., Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013. 42. P. 2880-2904.
https://doi.org/10.1039/C2CS35319A
17. Parak W.J. Complex colloidal assembly, Science. 2011. 334. P. 1359-1360.
https://doi.org/10.1126/science.1215080
18. González E., Arbiol J., Puntes V.F. Carving at the nanoscale: sequential galvanic exchange and kirkendall growth at room temperature. Science. 2011. 334. P. 1377-1380.
https://doi.org/10.1126/science.1212822
19. Ming T., Chen H.J., Jiang R.B., Li Q., Wang J.F. Plasmon-сontrolled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 2012. 3. P. 191-202.
https://doi.org/10.1021/jz201392k
20. Jiang R., Li B., Fang C., Wang J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014. 26. P. 5274-5309.
https://doi.org/10.1002/adma.201400203
21. Chen H., Ming T., Zhao L., Wang F., Sun L.D., Wang J., Yan C.-H. Plasmon-molecule interactions, Nano Today. 2010. 5. P. 494-505.
https://doi.org/10.1016/j.nantod.2010.08.009
22. Jaiswal A., Sanpui P., Chattopadhyay A., Ghosh S.S. Investigating fluorescence quenching of ZnS quantum dots by silver nanoparticles. Plasmonics. 2011. 6. P. 125-132.
https://doi.org/10.1007/s11468-010-9177-0
23. Mokari T., Rothenberg E., Popov I., Costi R., Banin U. Selective gowth of metal tips onto smiconductor quantum rods and tetrapods. Science. 2004. 304. P. 1787-1790.
https://doi.org/10.1126/science.1097830
24. Menagen G., Mocatta D., Salant A., Popov I., Dorfs D., Banin U. Selective gold growth on CdSe seeded CdS nanorods. Chem. Mater. 2008. 20. P. 6900-6902.
https://doi.org/10.1021/cm801702x
25. Kang K.A., Wang J., Jasinski J.B., Achilefu S. Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J. Nanobiotechnology. 2011. 9. P. 16.
https://doi.org/10.1186/1477-3155-9-16
26. Dyadyusha L., Yin H., Jaiswal S., Brown T., Baumberg J.J., Booy F.P., Melvin T. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. 2005. P. 3201-3203.
https://doi.org/10.1039/b500664c
27. Lee S.Y., Nakaya K., Hayashi T., Hara M. Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe. Phys. Chem. Chem. Phys. 2009. 11. P. 4403-4409.
https://doi.org/10.1039/b819903e
28. Ratchford D., Shafiei F., Kim S., Gray S.K., Li X.Q. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 2011. 11. P. 1049-1054.
https://doi.org/10.1021/nl103906f
29. Pompa P.P., Martiradonna L., Torre A. Della et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006. 1. P. 126-130.
https://doi.org/10.1038/nnano.2006.93
30. Song J.H., Atay T., Shi S., Urabe H., Nurmikko A.V. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 2005. 5. P. 1557-1561.
https://doi.org/10.1021/nl050813r
31. Jin Y.D., Gao X.H. Plasmonic fluorescent quantum dots. Nanotechnol. 2009. 4. P. 571-576.
https://doi.org/10.1038/nnano.2009.193
32. Kulakovich O. Strekal, N., Yaroshevich A. et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002. 2. P. 1449-1452.
https://doi.org/10.1021/nl025819k
33. Chen W.-T., Yang T.-T., Hsu Y.-J. Au-CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem. Mater. 2008. 20. P. 7204-7206.
https://doi.org/10.1021/cm802074j
34. Chen W.-T., Lin Y.-K., Yang T.-T., Pu Y.-C., Hsu Y.-J. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells. Chem. Communs. 2013. 49. P. 8486-8488.
https://doi.org/10.1039/c3cc43298j
35. Lee J.-S., Shevchenko E.V., Talapin D.V. Au−PbS core−shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 2008. 130. P. 9673-9675.
https://doi.org/10.1021/ja802890f
36. Wang D.S., Li X.Y., Li H., Li L.S., Hong X., Peng Q., Li Y.D. Semiconductor-noble metal hybrid nanomaterials with controlled structures. J. Mater. Chem. A. 2013. 1. P. 1587-1590.
https://doi.org/10.1039/C2TA00765G
37. Zhang J.T., Tang Y., Lee K., Ouyang M. Nonepitaxial growth of hybrid core-shell nanostructures with largе lattice mismatches. Science. 2010. 327. P. 1634-1638.
https://doi.org/10.1126/science.1184769
38. Chang E., Miller J.S., Sun J., Yu W.W., Colvin V.L., Drezek R., West J.L. Protease-activated quantum dot probes. Biochem. Biophys. Res. Communs. 2005. 334. P. 1317-1321.
https://doi.org/10.1016/j.bbrc.2005.07.028
39. Liu N.G., Prall B.S., Klimov V.I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor−metal interactions. J. Am. Chem. Soc. 2006. 128. P. 15362-15363.
https://doi.org/10.1021/ja0660296
40. Ma X.D., Fletcher K., Kipp T. et al. Photoluminescence of individual Au/CdSe nanocrystal complexes with variable interparticle distances. J. Phys. Chem. Lett. 2011. 2. P. 2466-2471.
https://doi.org/10.1021/jz201131u
41. Sun G., Khurgin J.B., Soref R.A. Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays. J. Opt. Soc. Am. B. 2008. 25. P. 1748-1755.
https://doi.org/10.1364/JOSAB.25.001748
42. Sun G., Khurgin J.B., Soref R.A., Practical enhancement of photoluminescence by metal nanoparticles. Appl. Phys. Lett. 2009. 94. P. 101103.
https://doi.org/10.1063/1.3097025
43. Govorov A.O., Bryant G.W., Zhang W., Skeini T., Lee J., Kotov N.A., Slocik J.M., Naik R.R. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Letters. 2006. 6. P. 984-994.
https://doi.org/10.1021/nl0602140
44. Kryuchenko Yu.V., Korbutyak D.V. Light emission by point dipole located inside spherical (semiconductor) particle in a vicinity of spherical metal particle. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. 16. P. 227-239.
https://doi.org/10.15407/spqeo16.03.227
45. Kryuchenko Yu.V., Korbutyak D.V. Excitonic emission of hybrid nanosystem "spherical semiconductor quantum dot + spherical metal nanoparticle. Ukr. J. Phys. 2015. 60. P. 633-647.
https://doi.org/10.15407/ujpe60.07.0634
46. Efros Al.L., Rosen M., Kuno M., Nirmal M., Norris D.J., Bawendi M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B. 1996. 54. P. 4843- 4856.
https://doi.org/10.1103/PhysRevB.54.4843
47. Dzhekson Dzh. Klassicheskaya elektrodinamika. M.: Mir, 1965. 703 s. (in Russian)
48. Madelung O., Semiconductors: Data Handbook. Berlin: Springer, 2004. 691 p.
https://doi.org/10.1007/978-3-642-18865-7
49. Ruppin R. Decay of an excited molecule near a small metal sphere. J. Chem. Phys. 1982. 76. P. 1681-1684.
https://doi.org/10.1063/1.443196
50. Dzhagan V., Loktev I., Himcinschi C., Jin X., Kolny-Olesia J., Zahn D. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange. Nanoscale Res. Lett. 2011. 6. P. 79.
https://doi.org/10.1186/1556-276X-6-79
51. Donegan J.F., Rakovich Yu.P. Cadmium Telluride Quantum Dots: Advances and Applications. Pan Stanford Publishing, 2013. 248 p.
52. Vasilevskiy M.I., Anda E.V., Makler S.S. Electron-phonon interaction effects in semiconductor quantum dots: A nonperturabative approach. Phys. Rev. B. 2004. 70. P. 035318. 53. Kulakovich O.S., Korbutyak D.V., Kalytchuk S.M. et al. Influence of conditions for synthesis of CdTe nanocrystals on their photoluminescence properties and plasmon effects. J. Appl. Spectroscopy. 2012. 79. P. 765-772.
https://doi.org/10.1103/PhysRevB.70.035318
54. Caruso F. Nanoengineering of particle surfaces Adv. Mater. 2001. 13. P. 11-22.
https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
55. Efros Al.L., Rosen M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 1997. 7. P. 1110-1113.
https://doi.org/10.1103/PhysRevLett.78.1110
56. Dickson R.M., Cubitt A.B., Tsien R.Y., Moerner W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997. 388. P. 355-358. 57. Frantsuzov P., Kuno M., Janko B., Marcus R.A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature. 2008. 4. P. 520-522.
58. Verberk R., van Oijen A.M., Orrit M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B. 2002. 66. P. 233202.
https://doi.org/10.1103/PhysRevB.66.233202
59. Shimizu K.T., Neuhauser R.G., Leatherdale C.A., Empedocles S.A., Woo W.K., Bawendi M.G. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B. 2001. 63. P. 205316.
https://doi.org/10.1103/PhysRevB.63.205316
60. Amecke N., Heber A., Cichos F. Distortion of power law blinking with binning and thresholding. J. Chem. Phys. 2014. 140. P. 114306.
https://doi.org/10.1063/1.4868252
61. Ha T. How nanocrystals lost their blink. Nature. 2009. 459. P. 649-650.
https://doi.org/10.1038/459649a
62. Wang X., Ren X., Kahen K. et al. Non-blinking semiconductor nanocrystals. Nature. 2009. 459. P. 686-689.
https://doi.org/10.1038/nature08072
63. Ratchford D., Shafiei F., Kim S., Gray S.K., Li X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 2011. 11. P. 1049-1054.
https://doi.org/10.1021/nl103906f
Ю.В. Крюченко, Д.В. Корбутяк
ГІБРИДНІ НАНОСТРУКТУРИ З КВАНТОВИМИ ТОЧКАМИ А2В6 І МЕТАЛЕВИМИ НАНОЧАСТИНКАМИ (ОГЛЯД)
Проаналізовано сучасний стан створення різноманітних гібридних напівпровідниковометалевих наноструктур і дослідження їх люмінесцентних властивостей. Такі структури демонструють незвичайні оптичні характеристики внаслідок можливості одночасного існування локалізованих поверхневих плазмонів у металевих наночастинках і екситонів у напівпровідникових квантових точках та їх резонансної взаємодії. Описано сучасний стан досліджень характеристик мерехтіння окремих квантових точок і квантових точок в околі металевих наночастинок.
Ключові слова: напівпровідникові квантові точки, металеві наночастинки, гібридні наноструктури, екситони, локальні поверхневі плазмони, квантовий вихід випромінювання, фотолюмінесценція.