Optoelectron. Semicond. Tech. 51, 7-30 (2016)

Yu.V. Kryuchenko, D.V. Korbutyak


The current state of development of various hybrid semiconductor-metal nanostructures and studying their luminescent properties have been analyzed. These structures exhibit extraordinary optical characteristics caused by simultaneous existence of localized surface plasmons in metallic nanoparticles and excitons in semiconductor quantum dots and their resonant interaction. The current state of investigating the blinking of single quantum dots and quantum dots in the vicinity of metal nanoparticles has been also reviewed.

Keywords: semiconductor quantum dots, metal nanoparticles, hybrid nanostructures, excitons, local surface plasmons, radiation efficiency, photoluminescence.


1. Kamarulzaman N., Chayed N.F., Badar N. MgO nanoparticles via a simple solid-state reaction, AIP Conf. Proc. 2016. 1711. P. 040004.

2. Sotiriou G.A., Blattmann C.O., Pratsinis S.E. Gas-phase synthesis of silver nanoparticles for plasmonic biosensors, Mater. Res. Soc. Symp. Proc. 2013. 1509. DOI:

3. Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Adv. Phys.: X. 2016. 1. P. 81-100.

4. Feldman М. Nanolitography. Cambridge: Woodhead publishing, 2013. 592 p.

5. Rouleau C.M., Shih C.-Y., Wu C., Zhigilei L.V., Puretzky A.A., Geohegan D.B. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations. Appl. Phys. Lett. 2014. 104. P. 193106.

6. Levi D., Zasyat M. The Sol-Gel Handbook - Synthesis, Characterization, and Applications. Berlin: Wiley-VCH, 2015. 1616 p.

7. Groeneveld E., Donega C.M. The Challenge of Colloidal Nanoparticle Synthesis, Chapter 6 in: Nanoparticles: Workhorses of Nanoscience, Celso de Mello Donegá (ed.). Berlin, Heidelberg: Springer-Verlag, 2014. P. 145- 189.

8. Donega C.M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011. 40. P. 1512-1546.

9. Gong K., Martin J.E., Shea-Rohwer L.E., Lu P., Kelley D.F. Radiative lifetimes of zincblende CdSe/CdS quantum dots. J. Phys. Chem. C. 2015. 119. P. 2231-2238.

10. Pradhan N., Sarma D.D. Advances in light-emitting doped semiconductor nanocrystals. J. Phys. Chem. Lett. 2011. 2. P. 2818-2826.

11. Pereira R.N., Almeida A.J. Doped semiconductor nanoparticles synthesized in gas-phase plasmas. J. Phys. D: Appl. Phys. 2015. 48. P. 314005.

12. Kwon S.G., Chattopadhyay S., Koo B. et al. Oxidation induced doping of nanoparticles revealed by in situ X-ray adsorption studies. Nano Lett. 2016. 16, No. 6. P. 3738-3747.

13. Peng Z., Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009. 4. P. 143-164.

14. Niu W., Xu G. Crystallographic control of noble metal nanocrystals. Nano Today. 2011. 6. P. 265-285.

15. Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-сontrolled synthesis of metal nanocrystals: Simple сhemistry meets complex physics? Angew. Chem. Int. Ed. 2009. 48. P. 60-103.

16. You H., Yang S., Dinga B., Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013. 42. P. 2880-2904.

17. Parak W.J. Complex colloidal assembly, Science. 2011. 334. P. 1359-1360.

18. González E., Arbiol J., Puntes V.F. Carving at the nanoscale: sequential galvanic exchange and kirkendall growth at room temperature. Science. 2011. 334. P. 1377-1380.

19. Ming T., Chen H.J., Jiang R.B., Li Q., Wang J.F. Plasmon-сontrolled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 2012. 3. P. 191-202.

20. Jiang R., Li B., Fang C., Wang J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014. 26. P. 5274-5309.

21. Chen H., Ming T., Zhao L., Wang F., Sun L.D., Wang J., Yan C.-H. Plasmon-molecule interactions, Nano Today. 2010. 5. P. 494-505.

22. Jaiswal A., Sanpui P., Chattopadhyay A., Ghosh S.S. Investigating fluorescence quenching of ZnS quantum dots by silver nanoparticles. Plasmonics. 2011. 6. P. 125-132.

23. Mokari T., Rothenberg E., Popov I., Costi R., Banin U. Selective gowth of metal tips onto smiconductor quantum rods and tetrapods. Science. 2004. 304. P. 1787-1790.

24. Menagen G., Mocatta D., Salant A., Popov I., Dorfs D., Banin U. Selective gold growth on CdSe seeded CdS nanorods. Chem. Mater. 2008. 20. P. 6900-6902.

25. Kang K.A., Wang J., Jasinski J.B., Achilefu S. Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J. Nanobiotechnology. 2011. 9. P. 16.

26. Dyadyusha L., Yin H., Jaiswal S., Brown T., Baumberg J.J., Booy F.P., Melvin T. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. 2005. P. 3201-3203.

27. Lee S.Y., Nakaya K., Hayashi T., Hara M. Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe. Phys. Chem. Chem. Phys. 2009. 11. P. 4403-4409.

28. Ratchford D., Shafiei F., Kim S., Gray S.K., Li X.Q. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 2011. 11. P. 1049-1054.

29. Pompa P.P., Martiradonna L., Torre A. Della et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006. 1. P. 126-130.

30. Song J.H., Atay T., Shi S., Urabe H., Nurmikko A.V. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett. 2005. 5. P. 1557-1561.

31. Jin Y.D., Gao X.H. Plasmonic fluorescent quantum dots. Nanotechnol. 2009. 4. P. 571-576.

32. Kulakovich O. Strekal, N., Yaroshevich A. et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002. 2. P. 1449-1452.

33. Chen W.-T., Yang T.-T., Hsu Y.-J. Au-CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem. Mater. 2008. 20. P. 7204-7206.

34. Chen W.-T., Lin Y.-K., Yang T.-T., Pu Y.-C., Hsu Y.-J. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells. Chem. Communs. 2013. 49. P. 8486-8488.

35. Lee J.-S., Shevchenko E.V., Talapin D.V. Au−PbS core−shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 2008. 130. P. 9673-9675.

36. Wang D.S., Li X.Y., Li H., Li L.S., Hong X., Peng Q., Li Y.D. Semiconductor-noble metal hybrid nanomaterials with controlled structures. J. Mater. Chem. A. 2013. 1. P. 1587-1590.

37. Zhang J.T., Tang Y., Lee K., Ouyang M. Nonepitaxial growth of hybrid core-shell nanostructures with largе lattice mismatches. Science. 2010. 327. P. 1634-1638.

38. Chang E., Miller J.S., Sun J., Yu W.W., Colvin V.L., Drezek R., West J.L. Protease-activated quantum dot probes. Biochem. Biophys. Res. Communs. 2005. 334. P. 1317-1321.

39. Liu N.G., Prall B.S., Klimov V.I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor−metal interactions. J. Am. Chem. Soc. 2006. 128. P. 15362-15363.

40. Ma X.D., Fletcher K., Kipp T. et al. Photoluminescence of individual Au/CdSe nanocrystal complexes with variable interparticle distances. J. Phys. Chem. Lett. 2011. 2. P. 2466-2471.

41. Sun G., Khurgin J.B., Soref R.A. Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays. J. Opt. Soc. Am. B. 2008. 25. P. 1748-1755.

42. Sun G., Khurgin J.B., Soref R.A., Practical enhancement of photoluminescence by metal nanoparticles. Appl. Phys. Lett. 2009. 94. P. 101103.

43. Govorov A.O., Bryant G.W., Zhang W., Skeini T., Lee J., Kotov N.A., Slocik J.M., Naik R.R. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Letters. 2006. 6. P. 984-994.

44. Kryuchenko Yu.V., Korbutyak D.V. Light emission by point dipole located inside spherical (semiconductor) particle in a vicinity of spherical metal particle. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. 16. P. 227-239.

45. Kryuchenko Yu.V., Korbutyak D.V. Excitonic emission of hybrid nanosystem "spherical semiconductor quantum dot + spherical metal nanoparticle. Ukr. J. Phys. 2015. 60. P. 633-647.

46. Efros Al.L., Rosen M., Kuno M., Nirmal M., Norris D.J., Bawendi M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B. 1996. 54. P. 4843- 4856.

47. Dzhekson Dzh. Klassicheskaya elektrodinamika. M.: Mir, 1965. 703 s. (in Russian)

48. Madelung O., Semiconductors: Data Handbook. Berlin: Springer, 2004. 691 p.

49. Ruppin R. Decay of an excited molecule near a small metal sphere. J. Chem. Phys. 1982. 76. P. 1681-1684.

50. Dzhagan V., Loktev I., Himcinschi C., Jin X., Kolny-Olesia J., Zahn D. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange. Nanoscale Res. Lett. 2011. 6. P. 79.

51. Donegan J.F., Rakovich Yu.P. Cadmium Telluride Quantum Dots: Advances and Applications. Pan Stanford Publishing, 2013. 248 p.

52. Vasilevskiy M.I., Anda E.V., Makler S.S. Electron-phonon interaction effects in semiconductor quantum dots: A nonperturabative approach. Phys. Rev. B. 2004. 70. P. 035318. 53. Kulakovich O.S., Korbutyak D.V., Kalytchuk S.M. et al. Influence of conditions for synthesis of CdTe nanocrystals on their photoluminescence properties and plasmon effects. J. Appl. Spectroscopy. 2012. 79. P. 765-772.

54. Caruso F. Nanoengineering of particle surfaces Adv. Mater. 2001. 13. P. 11-22.<11::AID-ADMA11>3.0.CO;2-N

55. Efros Al.L., Rosen M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 1997. 7. P. 1110-1113.

56. Dickson R.M., Cubitt A.B., Tsien R.Y., Moerner W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997. 388. P. 355-358. 57. Frantsuzov P., Kuno M., Janko B., Marcus R.A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature. 2008. 4. P. 520-522.

58. Verberk R., van Oijen A.M., Orrit M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B. 2002. 66. P. 233202.

59. Shimizu K.T., Neuhauser R.G., Leatherdale C.A., Empedocles S.A., Woo W.K., Bawendi M.G. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B. 2001. 63. P. 205316.

60. Amecke N., Heber A., Cichos F. Distortion of power law blinking with binning and thresholding. J. Chem. Phys. 2014. 140. P. 114306.

61. Ha T. How nanocrystals lost their blink. Nature. 2009. 459. P. 649-650.

62. Wang X., Ren X., Kahen K. et al. Non-blinking semiconductor nanocrystals. Nature. 2009. 459. P. 686-689.

63. Ratchford D., Shafiei F., Kim S., Gray S.K., Li X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 2011. 11. P. 1049-1054.

Ю.В. Крюченко, Д.В. Корбутяк


Проаналізовано сучасний стан створення різноманітних гібридних напівпровідниковометалевих наноструктур і дослідження їх люмінесцентних властивостей. Такі структури демонструють незвичайні оптичні характеристики внаслідок можливості одночасного існування локалізованих поверхневих плазмонів у металевих наночастинках і екситонів у напівпровідникових квантових точках та їх резонансної взаємодії. Описано сучасний стан досліджень характеристик мерехтіння окремих квантових точок і квантових точок в околі металевих наночастинок.

Ключові слова: напівпровідникові квантові точки, металеві наночастинки, гібридні наноструктури, екситони, локальні поверхневі плазмони, квантовий вихід випромінювання, фотолюмінесценція.