1. Rogalski A. Infrared Detectors, 2nd edn. Boca Raton, CRC Press, Taylor & Francis Group. 2011.
2. Rogalski A. In Mid-infrared Optoelectronics. Materials, Devices, and Applications, ed. by L. Tournié, L. Cerutti.
Woodhead Publishing, Duxford. 2020.
3. Singh R., Gupta A.K., Chahra K.C. Surface Passivation of Mercury-Cadmium-Telluride Infrared Detectors. Def.
Sci. J. 1991. 41. P. 205-239.
4. Agnihotri O.P., Musca C.A., Faraone L. Current status and issues in the surface passivation technology of
mercury cadmium telluride infrared detectors. Semicond. Sci. Technol. 1998. 13. P. 839–845.
5. T. Ashley T., Burke T. M., Emeny M. T., et al. Epitaxial InSb for elevated temperature operation of large IR
focal plane arrays. Proc. SPIE. 2003. 5074. P. 95-102.
6. Golding T. D., Strozier J., Williams G.M. et al. Epitaxial growth studies of InSb on CdTe: Kinetic and
thermodynamic aspects of InSb/CdTe interface formation. Mat. Res. Soc. Symp. Proc. 1991. 221. P.311-323.
7. Udayashankar N.K., Bhat H.L. Influence of growth parameters on the surface morphology and crystallinity of
InSb epilayers grown by liquid phase epitaxy. Bull. Mater. Sci. 2003. 26. No. 7. P. 685-692.
8. Michel E., Mohseni H, Kim J.D., et al. High carrier lifetime InSb grown on GaAs substrates. Appl. Phys. Lett.
1997. 71, №8. P.1071-1073.
9. Yang T-R., Cheng Y., Bi Wang J., Chuan Feng Z. Optical and transport properties of InSb thin films grown on
GaAs by metalorganic chemical vapor deposition. Thin Solid Films. 2006. 498. P. 158 - 162.
10. Razeghi M. Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the
center for quantum devices. Eur. Phys. J. Appl Phys. 2003. 23. P.149-205.
11. Zhang T., Clowes S.K., Debnath M., et al. High-mobility thin InSb films grown by molecular beam epitaxy.
Appl. Phys. Let. 2004. 84, №2. P.4463-4465.
12. Jia, B. W., Tan, K. H., Loke, W. K., Wicaksono, S., Yoon, S. F. Growth and characterization of InSb on (100) Si
for mid‑infrared application. Appl. Surf. Sci. 2018. 440. Р.939-‑945.
13. Soderstrom J.R., Cumming M.M., Yao J-Y., Anderson T.G. Molecular beam epitaxy growth and
characterization of lnSb layers on GaAs substrates. Semicond. Sci. Technol. 1992. 7. P.337-343.
14. Kanzaki K., Yahata A., Miyao W. Properties of InSb photodiodes fabricated by liquid phase epitaxy. Jap. J.
Appl. Phys. 1976. 15, №7. P.1329-1334.
15. Kumar A., Dutta P.S. Liquid phase epitaxial growth of lattice mismatched InSb, GaInAs and GaInAsSb on GaAs
subsrates using a quaternary melt. J. Cryst. Growth 2007. 310. P. 1647-1651.
16. Udayashankar N.K, Bhat H.L. Influence of growth parameters on the surface morphology and crystallinity of
InSb epilayers grown by liquid phase epitaxy. Bull. Mater. Sci. 2003. 26, №7. P. 685-692.
17. Li J., Tang C., Du P., et al. Epitaxial growth of lattice-matched InSb/CdTe heterostructures on the GaAs(111)
substrateby molecular beam epitaxy. Appl. Phys. Let. 2020. 116. P.122102.
18. Harris J.J., Zhang T., Branford W.R., et al. The role of impurity band conduction in the low temperature
characteristics of thin InSb films grown by molecular beam epitaxy. Semicond. Sci. Technol. 2004. 19 . №12.
19. Mishima T.D.; Santos M.B. Impact of structural defects upon electron mobility in InSb quantum wells. J. Appl.
Phys. 2011. 109. P.073707.
20. Alicea J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B. 2010. 81. P. 125318.
21. Lutchyn R.M., Sau J.D., Das Sarma S. Majorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures. Phys. Rev. Let. 2010. 105. P. 077001.
22. Lutchyn R., Bakkers E.P.A.M., Kouwenhoven L.P., et al. Majorana zero modes in
superconductor–semiconductor heterostructures. Nat. Rev. Mater. 2018. 3. P.52–68.
23. Shi Y., Bergeron E., Sfigakis F., Baugh J., Wasilewski Z.R. Hillock-free and atomically smooth InSb QWs
grown on GaAs substrates by MBE. J. Cryst. Growth . 2019. 513 . P.15-19
24. Wang X., Campbell C., Zhang Y.-H., Nemanich R.J. Band alignment at the CdTe/InSb (001) heterointerface. J.
Vac. Sci. Technol. A. 2018. 36. P.031101.
25. Huerta J., López M., Zelaya-Angel O. Phase stability during molecular beam epitaxial growth of CdTe on
InSb(111) substrates. J. Vac. Sci. Technol. B. 2000.18. P.1716-1720.
26. Luna E., Trampert A., Lu J., Aoki T., Zhang Y.-H., McCartney M.R., Smith D. J.. Strategies for Analyzing
Noncommon-Atom Heterovalent Interfaces: The Case of CdTe-on-InSb. Adv. Mater. Interfaces. 2020. 7.
P.1901658.
27. Sukach A., Tetyorkin V., Voroschenko A., et al. Carrier transport mechanisms in InSb diffused p-n functions.
SPQEO. doi: 10.15407/spqeo24.03.466 .
28. Liu W.K., Yuen W.T., Stradling R.A. Preparation of InSb substrates for molecular beam epitaxy. J. Vac. Sci.
Technol. B. 1995. 13. P. 1539-1545.
29. Sandroff C.J., Nottenburg R.N., Bischoff J.C., Bhat R. Dramatic enhancement in the gain of a GaAs/AlGaAs
heterostructure bipolar transistor by surface chemical passivation. Appl. Phys. Lett. 1987. 51. P. 33-35.
30. Bo Kyung Cha, KeedongYang, Eun Seok Cha, Seok-MinYong, Duchang Heo, Ryun Kyung Kim, Seongchae
Jeon, Chang-Woo Seo, Cho Rong Kim, Byung Tae Ahn, Tae-Bum Lee. Structural and electrical properties of
polycrystalline CdTe films for direct X-ray imaging detectors. Nuclear Instruments & Methods in Physics
Research A. 2013. 731. P.320-324.
31. El-Kadry N., Ashour A., Mahmoud S.A. Structural dependence of d.c. electrical properties of physically
deposited CdTe thin films. Thin Solid Films. 1995. 269. P.112-116.
32. Tsybrii Z., Vuichyk M., Svezhentsova K., et al. Low-temperature growth of CdTe thin films as passivation
layers for IR and THz functional elements. Mater. Chem. Phys. 2022. 278. P. 125581.
33. Lampert M.A., Mark P. Current Injection in Solids. Academic Press, New York. 1970.
34. Kao K.C., Hwang W. Electrical Transport in Solids. With Particular Reference to Organic Semiconductors.
Pergamon Press, Oxford. 1981.
35. Sze S.M., Kwok K. Ng. Physics of Semiconductor Devices, 3d edn. Wiley. 2007.
36. Gopal V., Gautam N., Plis E., Krishna S. Modelling of current-voltage characteristics of infrared photo-detectors
based on type - II InAs/GaSb super-lattice diodes with unipolar blocking layers. AIP Advances. 2015. 5.
P.097132.
37. Dongaonkar S., Servaites J.D., Ford G.M., et al. Universality of non-Ohmic shunt leakage in thin-film solar
cells. J. Appl. Phys. 2010. 108. P.124509.
38. McMahon T.J., Berniard T.J., Albin D.S. Nonlinear shunt paths in thin-film CdTe solar cells. J. Appl. Phys.
2005. 97. P.054503.
39. Reichman J. Minority carrier lifetime of CdHgTe from photoconductivity decay method. Appl. Phys. Lett. 1991.
59. P. 1221- 1223.
40. Krishnamurthy S., Berding M.A., Yu Z.G. Minority carrier lifetimes in HgCdTe alloys. J. Electron. Mat. 35. P.
1369-1378.
41. Hollis, J.E.L., Choo C., Heasell E.L. Recombination centers in InSb. J. Appl. Phys. 1967. 35. P.1626-1636.
42. Lu J., DiNezza M.J., Zhao X-H., et al. Towards defect-free epitaxial CdTe and MgCdTe layers grown on
InSb(001)substrates. J. Cryst. Growth. 2016. 439. P.99–103.
43. Chew N.G., Williams G.M., Cullis A.G. Transmission electron-microscope studies of heteroepitaxial CdTe on
(001)InSb substrates. Inst. Phys. Conf. 1983. 68. P. 437–440.
44. McKeon B.S., Liu X., Furdyna J.K., Smith D.J. Atomic-Resolution Structure Imaging of Misfit Dislocations at
Heterovalent II−VI/III−V Interfaces. ACS Appl. Electron. Mat. 2021. 3. 2573−2579.
45. Johnson S.M., Rhiger D.R., Rosbeck J.P., et al. Effect of dislocations on the electrical and optical properties of
long wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B. 1992. 10. P. 1499-1506.
46. Capper P., Garland J., ed. Mercury Cadmium Telluride: Growth, Properties and Applications. Wiley. 2011.
47. Sher A., Berding M.A., van Schilfgaarde M., Chen A-B. HgCdTe status review with emphasis on correlations,
native defects and diffusion. Semicond. Sci. Technol. 1991. 6. C59-C70.
48. Yoshikawa M., Maruyama K., Saito T., Maekawa T., Takigawa H. Dislocations in HgCdTe/CdTe and
HgCdTe/CdZnTe heterojunctions. J. Vac. Sci. Technol. A. 1987. 5. P.3052-3054.
49. An S.Y., Kim J.S., Seo D.W., Suh S.H. Passivation of HgCdTe p-n Diode Junction by Compositionally Graded