1. Puiu M., Bala C. SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors. 2016. 16. Р. 870-884; doi: 10. 3390/s16060870.
https://doi.org/10.3390/s16060870
2. Vigneshvar S., Sudhakumari C.C., Senthilkumaran B., Prakash H. Recent advances in biosensor technology for potential applications an overview. Front. Bioeng. Biotechnol. 2016. 4:11. doi: 10.3389/fbioe.2016.00011.
https://doi.org/10.3389/fbioe.2016.00011
3. Handbook of Surface Plasmon Resonance. Edited by R.B.M. Schasfoort and A. J. Tudos. Cambridge (UK): Royal Society of Chemistry. 2008. 426 p.
4.Zayats A.V., Smolyaninov I.I., Maradudin A.A. Nano-Optics of surface plasmon polaritons. Phys. Rep. 2005. 408. P. 131-314.
https://doi.org/10.1016/j.physrep.2004.11.001
5. Dastmalchi B., Tassin P., Koschny T., Soukoulis C.M. A new perspective on plasmonics: Confinement and propagation length of surface plasmons for different materials and geometries. Adv. Opt. Mater. 2016. 4. P. 177-184.
https://doi.org/10.1002/adom.201500446
6. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008. 108. Р. 462-493.
https://doi.org/10.1021/cr068107d
7. Nguyen H., Park J., Kang S., Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors. 2015. 15. P.10481-10510.
https://doi.org/10.3390/s150510481
8. Vörös J. The density and refractive index of adsorbing protein layers. Biophysical Journal. 2004. 87. Р. 553-561.
https://doi.org/10.1529/biophysj.103.030072
9. Spadavecchia J., Manera M.G., Quaranta F., Siciliano P., Rella R. Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosensors and Bioelectronics. 2005. 21. P. 894-900.
https://doi.org/10.1016/j.bios.2005.02.016
10. Byrne B., Stack E., Gilmartin N., OKennedy R. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009. 9. P. 4407-4445.
https://doi.org/10.3390/s90604407
11. Holler S., Arnold S., Dantham V. A nanoplasmonic sensor detects cancer proteins at the single-molecule level. Newsroom. 2013. doi:10.1117/2.1201309.005131.
https://doi.org/10.1117/2.1201309.005131
12. Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering. 2017. 56, №12. Р. 121907.
https://doi.org/10.1117/1.OE.56.12.121907
13. Kostiukevych K.V., Khrystosenko R.V., Zahorodnia S.D., Kostiukevych S.O., Koptiukh A.A., Kriuchyn A.A., Oleksenko P.F. Molekuliarna diahnostyka na osnovi kutovoi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2020. 22, №3. S.14-30.
https://doi.org/10.35681/1560-9189.2020.22.3.218824
14. Erickson D., Mandal S., Yang A.H.J., Cordovez B. Nanobiosensors: Optofluide, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid. Nanofluid. 2008. 4. P. 33-52.
https://doi.org/10.1007/s10404-007-0198-8
15. Abbas A., Linman M.J., Cheng Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics. 2011. 26. Р.1815-1824.
https://doi.org/10.1016/j.bios.2010.09.030
16. Wang X., Zhan S., Huang Z., Hong X. Review: Advances and applications of surface plasmon resonance biosensing instrumentation. Instrum. Sci. Technol. 2013. 41. P. 574-607.
https://doi.org/10.1080/10739149.2013.807822
17. Tabasi O., Falamaki C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Analytical Methods. 2018. 32. P. 3899 - 4008.
https://doi.org/10.1039/C8AY00948A
18. Xu Y., Bai P., Zhou X., Akimov Yu., Png C.E., Ang L.-K., Knoll W., Wu L. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth (review). Adv. Optical Mater. 2019. 1801433. 47 p.
https://doi.org/10.1002/adom.201801433
19. Khrystosenko R.V. Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, №3. P. 279-285.
https://doi.org/10.15407/spqeo18.03.279
20. Hristosenko R.V., Kostyukevich E.V., Ushenin Yu.V., Samojlov A.V. Uluchshenie ekspluatacionnyh harakteristik preobrazovatelej na osnove poverhnostnogo plazmonnogo rezonansa za schet opticheskoj chasti sensornyh priborov tipa "PLAZMON". Optoelektronika i poluprovodnikovaya tehnika. 2015. 50. S. 53-60.
21. Kostiukevych S.O., Koptiukh A.A., Kostiukevych K.V., Lysiuk V.O., Pohoda V.I., Khrystosenko R.V., Samoilov A.V., Ushenin Yu.V., Surovtseva O.R., Kriuchyn A.A. Udoskonalennia sensoriv z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu na polimernii osnovi. Reiestratsiia, zberihannia i obrobka danykh. 2019. 21, №3. S. 3-19.
https://doi.org/10.35681/1560-9189.2019.21.3.183437
22. Kostiukevych K.V., Kriuchyna Ye.A., Kriuchyn A.A., Kostiukevych S.O. Optychni biosensory na osnovi hibrydnykh nanostruktur ta meta materialiv. Medychna informatyka ta inzheneriia. 2021. №2. S.14-33.
23. Kostiukevych S.O., Kostiukevych K.V., Khrystosenko R.V., Koptiukh A.A., Pohoda V.I. Chutlyvyi element sensora poverkhnevykh plazmoniv z termichnoiu modyfikatsiieiu strukturnykh vlastyvostei polimernoi pidkladky. Optoelektronika ta napivprovidnykova tekhnika. 2022. 57. S. 82-92.
https://doi.org/10.15407/iopt.2022.57.082
24. Kostiukevych K.V., Khrystosenko R.V., Kriuchyn A.A., Rubish V.M., Horbov I.V., Pohoda V.I., Kostiukevych S.O. Spektrometry z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu: shliakhy pidvyshchennia efektyvnosti (ohliad). Optoelektronika ta napivprovidnykova tekhnika. 2024. 59. S.76-98.
https://doi.org/10.15407/iopt.2024.59.076
25. Hodnic V., Anderluh G. Toxin detection by surface plasmon resonance (Review). Sensors. 2009. 9. P. 1339-1354. doi: 10.3390/s9031339.
https://doi.org/10.3390/s9031339
26. Shankaran D.R., Gobi K.V., Miura N. Recent advancement in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B. 2007. 121, №1. P. 158-177.
https://doi.org/10.1016/j.snb.2006.09.014
27. D'Orazio P. Biosensors in clinical chemistry - 2011 update. Clin. Chim. Acta. 2011. 412. P. 1749-1761.
https://doi.org/10.1016/j.cca.2011.06.025
28. Helmerhorst E., Chandler D.J., Nussio M., Mamotte C.D. Real-Time and label-free bio-sensing of molecular interactions by surface plasmon resonance: A laboratory medicine perspective. Clin. Biochem. Rev. 2012. 33. P. 161-173.
29. Krystosenko R.V. Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19,№1. Р. 84-89.
https://doi.org/10.15407/spqeo19.01.084
30. Ramsden J.J. Optical Biosensors (review). Journal of molecular recognition. 1997. 10. P. 109-120.
https://doi.org/10.1002/(SICI)1099-1352(199705/06)10:3<109::AID-JMR361>3.0.CO;2-D
31. Snopok B.A., Kostyukevich K.V., Lysenko S.I., Lytvyn P.M., Shepeliavii P.E., Lytvyn O.S., Mamykin S.V., Zynio S.A., Kostyukevich S.A., Venger E.F, Shirshov Yu.M. Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2001. 4, №1. P. 56-69.
https://doi.org/10.15407/spqeo4.01.056
32. Snopok B.A., Kostyukevych K.V., Rengevych O.V., Shirshov Yu.M., Venger E.F., Kolesnikova I.N., Lugovskoi E.V. A biosensor approach to probe the structure and function of the adsorbed proteins: fibrinogen at the gold surface. Semiconductor Physics, Quantum Electronics and Optoelectronics. 1998. 1, №1. Р.121-134.
https://doi.org/10.15407/spqeo1.01.121
33. Kostyukevich E.V., Shirshov Yu.M. Development of biosensor systems based on surface plasmon resonance phenomenon: physical, chemical and biological aspects. Proc. SPIE. 2004. 5327. Р.374-385.
https://doi.org/10.1117/12.530451
34. Kostiukevych S.O., Khrystosenko R. V., Kostiukevych K.V., Koptiukh A.A., Surovtseva O.R., Kriuchyn A.A. Molekuliarnyi analiz tonkykh plivok riznoi pryrody na osnovi spektroskopii poverkhnevykh plazmoniv. Reiestratsiia, zberihannia i obrobka danykh. 2018. 20. №4. S. 5-20.
https://doi.org/10.35681/1560-9189.2018.20.4.178531
35. Jung Ch., Dannenberger O., Xu Y., Buck M., Grunze M. Self-assembled monolayers from organosulfur compounds: a comparison between sulfides, disulfides and thiols. Langmuir. 1998. 14. P. 1103-1107.
https://doi.org/10.1021/la9708851
36. Kostyukevych K.V. Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2016. 19, №3. Р. 255-266.
https://doi.org/10.15407/spqeo19.03.255
37. Zubimendi J.L., Vela M.E., Salvarezza R.C., Vazques L., Vara J.M., Arvia A.J. Decrease in the roughness of vapor-deposited gold surfaces induced by surface mobility. Langmuir. 1996. 12. P. 12-18.
https://doi.org/10.1021/la9406923
38. Frimantl M. Himiya v dejstvii. Ch-2. Moskva: Mir, 1991. 620 s.
39. Kotelitz M., Oudar J. Etude thermodynamique et structurale de l'adsorption dans le systeme or-soufre. Surf. Sci. 1971. 27. P. 176-190.
https://doi.org/10.1016/0039-6028(71)90169-5
40. Kotelitz M., Domange J.L., Oudar J. Etude par la diffraction des electrons lents et la spectroscopie Auger de l'adsorption du soufre sur l'or. Surf. Sci. 1973. 34. P. 431-449.
https://doi.org/10.1016/0039-6028(73)90128-3
41. Kostyukevich E.V., Kostyukevich S.A. Reakcionnyj otzhig kak sposob passivacii i stabilizacii poverhnostej biosensorov. Optoelektronika i poluprovodnikovaya tehnika. 2011. 46. S. 122-129.
42. Snopok B.A., Kostyukevych K.V., Beketov G.V., Zynio S.A., Shirshov Yu.M., Venger E.F, Verevka S.V. Biochemical passivation of metal surfaces for sensor application: reactive annealing of polycrystalline gold films in hydrogen sulfide atmosphere. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2000. 3, №1. P.59-68.
https://doi.org/10.15407/spqeo3.01.059
43. Frattali V., Steiner R.F. Separation and some properties of three inhibitors from commercial crude soybean trypsin inhibitor. Biochemistry. 1968. 7,№,2. Р. 521-529.
https://doi.org/10.1021/bi00842a006
44. Veremeenko K.N. Proteoliticheskie fermenty podzheludochnoj zhelezy i ih primenenie v klinike. Kiev: Zdorove, 1967. S. 5-46.
45. Kunitz M. Crystalline soybean trypsin inhibitor. J. Gen. Physiol. 1947. 30. Р. 291-310.
https://doi.org/10.1085/jgp.30.4.291
46. Salamon Z., Macleod H.A., Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochimica et Biophysica Acta. 1997. 1331. P. 131-152.
https://doi.org/10.1016/S0304-4157(97)00003-8
47. Vashist S.R., Dixit C.K., MacCraith B.D., OKennedy R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst. 2011. 136. P.4431-4436.
https://doi.org/10.1039/c1an15325k
48. Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005. 105. P. 1103-1169.
https://doi.org/10.1021/cr0300789
49. Delamarche E., Michel B., Biebuyck H.A., Gerber C. Golden interfaces: The surface of self-assembled monolayers. Advanced Materials. 1996. 8. P. 719-729.
https://doi.org/10.1002/adma.19960080903
50. Gandhiraman R.P., Gubala V., OMahony C.C., Cummius T., Raj J., Eltayeb A., Doyle C., James B., Daniels S., Williams D.E. PECVD coatings for functionalization of point-of-care biosensor surfaces. Vacuum. 2012. 86. P. 547-555.
https://doi.org/10.1016/j.vacuum.2011.08.014
51. Ulman A. An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly. San Diego, CA.: Academic Press. 1991. 352 p.
https://doi.org/10.1016/B978-0-08-092631-5.50009-9
52. Fenter P., Eberhardt A. Eisenberger P. Self-assembly of n-alkyl thiols as disulfides on Au(111). Science. 1994. 266. P. 1216-1218.
https://doi.org/10.1126/science.266.5188.1216
53. Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996. 96. P. 1533-1554.
https://doi.org/10.1021/cr9502357
54. McCarly R.L., Kim Y-T., Bard A.J. Scanning tunneling microscopy and quartz crystal microbalance studies of Au exposed to sulfide, thiocyanate, and n- octadecanethiol. J. Phys. Chem. 1993. 97. P. 211-215.
https://doi.org/10.1021/j100103a036
55. Bain C.D., Evall J., Whitesides G.M. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J. Am. Chem. Soc. 1989. 111. P. 7155-7164.
https://doi.org/10.1021/ja00200a039
56. Braundmeier A.J., Arakawa E.T. Effect of surface roughness on surface plasmon resonance adsorption. J. Phys. Chem. Solids. 1974. 35. P. 517-520.
https://doi.org/10.1016/S0022-3697(74)80005-3
57. Kostiukevych C.O., Kostiukevych K.V., Khrystosenko R.V. Sposib vyhotovlennia robochoho elementa peretvoriuvacha z pryzmovym typom zbudzhennia poverkhnevoho plazmonnoho rezonansu: pat. 112568 Ukraina: MPK (2014.01) G01N 21/55. №u201605636; zaiavl. 25.05.2016; opubl. 26.12.2016, Biul. № 24.
58. Kostyukevich S.O., Hristosenko R.V., Kostyukevich K.V., Koptyuh A.A., Pogoda V.I. Efektivnij robochij element sensora z prizmovim tipom zbudzhennya poverhnevogo plazmonnogo rezonansu: patent 128844 Ukrayina: MPK (2014.01) G01N 21/25; B82Y 20/00. № a202102589; zayavl. 17.05.2021; opubl. 06.11.2024, Byul. №45.
59. Lysenko S.I., Snopok B.A., Kostyukevich E.V., Zinio S.A., Sterligov V.A., ShirshovYu.M., Venger E.F. Light scattering of thin dielectric films: self-assembled monolayers on the surface of polycrystalline gold. Proc. SPIE. 1999. 3904. P. 476-487.
https://doi.org/10.1117/12.370442
60. Snopok B.A., Strizhak P.E., Kostuykevich E.V., Serebriy V., Lysenko S.I., Shepeliavii P.E, Priatkin S.L., Kostyukevich S.A., Venger E.F., Shirshov Yu.M. Interfacial architecture on the fractal support: polycrystalline gold films as support for self-assembling monolayers. Semiconductor Physics, Quantum Electronics and Optoelectronics. 1999. 2, № 3. P. 86-97.
61. Lysenko S.I., Snopok B.A., Sterligov V.A., Kostyukevich E.V., Shirshov Yu.M. Light scattering by molecular-organized films on the surface of polycrystalline gold. Optics and Spectroscopy. 2001. 90, No.4. Р. 606-616.
https://doi.org/10.1134/1.1366757
62. Keller H., Schrepp W., Fuchs H. Self-assembled organic films on gold and silver. Thin solid films. 1992. 210/211. P. 799-802.
https://doi.org/10.1016/0040-6090(92)90408-4
63. Liedberg B., Lundstrom I. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuatos B. 1993. 11. P. 63-72.
https://doi.org/10.1016/0925-4005(93)85239-7
64. Tabasi O., Falamaki C., Mahmoudi M. A detailed study on the fabrication of surface plasmon sensor chips: Optimization of dextran molecular weight. Plasmonics. 2019. https//doi. org/10.1007/s 11468-018-00903-8.
65. Nesterova N.V.,Zahorodnia S.D., Baranova H.V., Holovan A. V., Ushenin Yu. V., Khrystosenko R.V. Imunosensorna test-systema na osnovi poverkhnevoho plazmonnoho rezonansu dlia vyiavlennia antytil proty virusu Epshteina-Barr: pat. 51125 Ukraina: MPK (2009) A61K 31/505. № u2009 05251; zaiavl. 26.05.2009; opubl. 12.07.2010, Biul. №13.
66. Nesterova N. V., Nosach L.M., Povnytsia O.Iu., Zahorodnia S. D., Baranova H. V., Holovan A.V., Ushenin Yu. V., Khrystosenko R.V. Imunosensorna test-systema dlia vyiavlennia v syrovatkakh krovi antytil proty adenovirusiv liudyny: pat.46973 Ukraina: MPK (2009) A61K 47/48, A61K 39/44. №u200907930; zaiavl. 27.07.2009; opubl. 11.01.2010, Biul. №1.
67. Holtsov Yu.H., Matkovska L.O., Snopok B.A., Kostiukevych K.V., Shyrshov Yu.M., Venher Ye.F. Biolohichnyi optoelektronnyi peretvoriuvach, shcho kontroliuie stereokhimichne zakriplennia aktyvnykh molekul: pat. 37078 Ukraina: MPK6 G01N 21/55, 33/553. № 2000031543; zaiavl. 20.03.2000; opubl. 16.04.2001, Biul. № 3.
68. Snopok B.A., Goltsov Yu.G., Kostyukevich E.V., Matkovskaja L.A., Shirshov Yu.M., Venger E.F. Self-assembled multilayer super-structures as immobilization support for bioreceptors. Sensors and Actuators B. 2003. 95. P. 336-343.
https://doi.org/10.1016/S0925-4005(03)00536-7
69. Kostyukevich E.V., Hristosenko R.V., Ushenin Yu.V., Samojlov A.V., Kostyukevich S.A. Immunosensor poverhnostnogo plazmonnogo rezonansa s povyshennoj chuvstvitelnostyu i stabilnostyu dlya detektirovaniya fibrinogena, rastvorimogo fibrina i D-dimera v plazme krovi cheloveka. Optoelektronika i poluprovodnikovaya tehnika. 2012. 47. S.70-76.
70. Harsanyi G. Polymer films in sensor applications: a review of present uses and future possibilities. Sensor Review. 2000. 20, №2. P. 98-105.
https://doi.org/10.1108/02602280010319169
71. Zhaoa B., Fenga S., Hua Y., Wangb S., Lua X. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chemistry. 2019. 276. P. 366-375.
https://doi.org/10.1016/j.foodchem.2018.10.036
72. Hu Y., Feng S., Gao F., Li-Chan E.C.Y., Grant E., Lu X. Detection of melamine in milk using molecularly imprinted polymers - surface enhanced Raman spectroscopy. Food Chemistry. 2015. 176. P. 123-129.
https://doi.org/10.1016/j.foodchem.2014.12.051
73. Kumar A., Abbot N.L., Kim E., Biebuyck H.A., Whitesides G.M. Patterned self-assembled monolayers and meso-scale phenomena. Acc. Chem. Res. 1995. 28. P. 219-226.
https://doi.org/10.1021/ar00053a003
74. Lopez G.P., Biebuyck H.A., Harter R., Kumar A., Whitesides G.M. Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy. J. Am. Chem. Soc. 1993. 115. Р.10774-10781.
https://doi.org/10.1021/ja00076a038
75. Dulcey C.S., Georger J.H., Krauthamer Jr.V., Stenger D.A., Fare T.L., Calvert J.M. Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies. Science. 1991. 252. P. 551-554.
https://doi.org/10.1126/science.2020853
76. Cotton C., Glidle A., Beamson G., Cooper J. M. Dynamics of the formation of mixed alkanethiol monolayers: application in structuring biointerfacial arrangements. Langmuir. 1998. 14. P. 5139-5146.
https://doi.org/10.1021/la980321c
77. Bain C.D., Whitesides G.M. Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J. Am. Chem. Soc. 1989. 111. P. 7164-7175.
https://doi.org/10.1021/ja00200a040
78. Yola M.L., Atar N., Eren T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sensors and Actuators B. 2014. 198. P. 70-76.
https://doi.org/10.1016/j.snb.2014.02.107
79. Piletskyi S.A., Kostiukevych K.V., Shyrshov Yu.M., Snopok B.A. Optychnyi peretvoriuvach dlia bezposerednoho yakisnoho ta kilkisnoho vyznachennia rechovyny u ridkii probi: pat. 34994 Ukraina: MPK6 G01N 21/55, 30/93. № 99074335; zaiavl. 27.07.1999; opubl. 15.03.2001, Biul. № 2.
80. Kostyukevich E.V., Kostyukevich S.A. Sensor poverhnostnogo plazmonnogo rezonansa dlya opredeleniya urovnya barbituratov v zhidkoj probe. Optoelektronika i poluprovodnikovaya tehnika. 2010. 45. S. 130-136.