https://doi.org/10.15407/iopt.2024.59.028

Optoelectron. Semicond. Tech. 59, 28-66 (2024)

D.V. Korbutyak, O.G. Kosinov, B.N.Kulchytskyi


A2B6 NANOCRYSTALS  DOPED  WITH MAGNETIC IMPURITIES  (REVIEW)


The special properties of transition-metal-doped А2В6 nanostructures have opened up new opportunities for their use in electronics and optoelectronics, in solar cells, for the manufacture of short-wave light-emitting and laser diodes, and the resulting pronounced ferromagnetism at room temperature allows them to be used in spintronics devices. In addition, pure and doped ZnO nanocrystals, due to their non-toxicity, are used in biosensors, drug delivery and other biological applications. It is known that solar cells sensitized by quantum dots have attracted much attention because of their promising prospects for improving the power conversion efficiency. Thus Zn-Cu-In-Se QDSCs maintain a record (PCE) of 12.98%. But the advantages of CdTe QDSCs are high extinction coefficient (105 cm-1 ) and ease of synthesis. In addition, CdTe has a narrower forbidden zone (1.5 eV), which extends the light absorption range to the longer wavelength region, and the higher edge of the conduction band accelerates the injection of electrons from CdTe CTs into the photoanode. Dilute magnetic semiconductors (DMS) combine promising electrical and ferromagnetic properties (FP) with optical transparency, thermal and radiation resistance in terms of practical applications. For use in spintronics, DMS can be obtained by adding magnetic impurities (Co, Ni, Gd, Sm, Eu, Ce, and Er) to the nodes of the original lattice of А2В6 nanocrystals. The main requirements for DMS are the presence of FP at room temperature and high values of specific magnetization of samples in the saturation state.

In this review, various synthesis methods of doped ZnO:Mn, CdTe:Mn/Co, CdS:Mn/Cr/Fe/Al, CdTe/ZnS:Mn nanocrystals are considered. Also, the methods of studying the structure and properties of these materials are considered, namely: X-ray diffraction studies, photoluminescence, absorption and EPR spectra. The magnetic properties of doped А2В6 nanocrystals are also discussed. Finally, attention is paid to the practical application of А2В6 nanostructures.


Keywords: A2B6 nanocrystals, magnetic impurity, quantum dot, synthesis, optical absorption, photoluminescence, doping, ferromagnetism.

References

[1]. Raoufi D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy. 2013. 50. P. 932-937. DOI: 10.1016/j.renene.2012.08.076.

[2]. Ba-Abbad M.M., Kadhum A.A.H., Mohamad A.B., Takriff M.S., Sopian K. Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol-gel technique. Journal of Industrial and Engineering Chemistry. 2013. 19. P. 99=105. DOI: 10.1016/j.jiec.2012.07.010.

[3]. Wangensteen T., Dhakal T., Merlak M., Mukherjee P., Phan M.H., Chandra S., Srikanth H., Witanachchi S. Growth of uniform ZnO nanoparticles by a microwave plasma process. Journal of Alloys and Compounds. 2011. 509. P. 6859-6863. DOI: 10.1016/j.jallcom.2011.03.161.

[4.] Chieng B.W., Loo Y.Y. Synthesis of ZnO nanoparticles by modified polyol method. Materials Letters. 2012. 73. P. 78-82. DOI: 10.1016/j.matlet.2012.01.004.

[5]. Rai P., Yu Y.-T. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sensors and Actuators B: Chemical. 2012. 173. P. 58-65. DOI: 10.1016/j.snb.2012.05.068.

[6]. Negar M.V., Kermanpur A., Abbasi M.H. Bulk syntheis of ZnO nanoparticles by the one-step electromagnetic levitational gas condensation method. Ceramics International. 2012. 38. P. 5871-5878. DOI: 10.1016/j.ceramint.2012.04.038. 

[7]. Tsai S.C., Song Y.L., Tsai C.S., Yang C.C., Chiu W.Y., Lin H.M. Ultrasonic spray pyrolysis for nanoparticles synthesis. Journal of Materials Science. 2004. 39. P. 3647-3657. DOI: 10.1023/B:JMSC.0000030718.76690.11.

[8.] Kovalenko О.V., Vorovsky V.Yu. Dependence of magnetic properties of ZnO:Mn nanocrystals on synthesis conditions. Journal of nano- and electronic physics. 2022. 14. P.3031-3035. DOI: 10.21272/jnep.14(3).03030.

[9]. Kovalenko O.V., Vorovsky V.Yu., Khmelenko O.V., Plakhtii Ye.G., Kushnerov O.I. Peculiarities of doping of ZnO:Mn nanocrystals as during their synthesis by the aerosol pyrolysis method. Journal of Physics and Electronics. 2020. 28. P. 55. DOI: 10.15421/332027.

[10.] Bououdina M., Omri K., El-Hilo M., El-Amiri A., Lemine O.M., Alyamani A., Hlil E.K., Lassri H., El-Mir L. Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E: Low-dimensional systems and nanostructures. 2014. 56. P. 107-112. DOI: 10.1016/j.physe.2013.08.024.

[11.] El-Mir L., Amlouk A., Barthou C., Alaya S. Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2composite based on nanosized zinc oxide-confined silica aerogels. Physica B: Condensed Matter. 2007. 388. P. 412-417. 10.1016/j.physb.2006.06.151.

[12]. Sharda, Jayanthi K., Chawla S. Synthesis of Mn doped ZnO nanoparticles with biocompatible capping. Applied Surface Science. 2010. 256. P. 2630–2635. DOI: 10.1016/j.apsusc.2009.11.008.

[13]. Sharma R.K., Patel S., Pargaien K.C. Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2012. 3. P. 035005. DOI: 10.1088/2043-6262/3/3/035005.

[14]. Ito M. In vitro properties of a chitosan-bonded hydroxyapatite bone-filling paste. Biomaterials. 1991. 12. P. 41-45. DOI: 10.1016/0142-9612(91)90130-3.

[15]. Ørstavik D., Hongslo J.K. Mutagenicity of endodontic sealers. Biomaterials. 1985. 6. P. 129-132. DOI: 10.1016/0142-9612(85)90076-6.

[16]. Issei S., Takeshi K. Magnetic and optical properties of novel magnetic semiconductor Cr-doped ZnO and its application to all oxide p–i–n diode. Applied Surface Science. 2003. 216. P. 603-606. DOI: 10.1016/S0169-4332(03)00461-6.

[17]. Wu X., Chen H., Gong L., Qu F., Zheng Y. Low temperature growth and properties of ZnO nanorod arrays. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2011. 2. P. 035006. DOI: 10.1088/2043-6262/2/3/035006.

[18]. Studenikin S.A., Golegu N., Cocivera M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl.Phys. 1998. 84. P. 2287–2294. DOI: 10.1063/1.368295.

[19.] Ghule A.V., Ghule K., Chen C.Y., Chen W.Y., Tzing S.H., Chang H., Ling Y.C. In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dehydrate. Journal of Mass Spectrometry. 2004. 39. P. 1202. DOI: 10.1002/jms.721.

[20]. Lupan O., Chai G., Chow L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectronic Engineering. 2008. 85. P. 2220-2225. DOI: 10.1016/j.mee.2008.06.021.

[21]. Dai Y., Zhang Y., Li Q.K. and Nan C.W. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chemical Physics Letters. 2002. 358. P. 83-86. DOI: 10.1016/S0009-2614(02)00582-1.

[22]. Bauer C., Boschloo G., Mukhtar E., Hagfeldt A. Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO. The Journal of Physical Chemistry B. 2001. 105. P. 5585-5588. DOI: 10.1021/jp004121x.

[23]. Zhou J, Xu N.S., Wang Z.L. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials. 2006. 18. P. 2432-2435. DOI: 10.1002/adma.200600200.

[24]. Cicek V., Ozdemir M. Synthesis, characterization and alignment of Mn2+ and/or Eu3+ doped cadmium telluride nanowires. International Journal of Engineering Research and Applications. 2013. 3. P. 147–157.

[25]. Santra P.K., Kamat P.V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012. 134. P. 2508–2511. DOI: 10.1021/ja211224s.

[26]. Li H., Lu W., Song B., Zhou J., Zhao G., Hana G. The design of Mn2+&Co2+ co-doped CdTe quantum dot sensitized solar cells with much higher efficiency. The Royal Society of Chemistry Advances. 2020. 10. P. 35701–35708. DOI: 10.1039/d0ra06381a.

[27]. Jing L., Ding K., Kalytchuk S., Wang Y., Qiao R., Kershaw S.V., Rogach A.L., Gao M. Aqueous manganese-moped core/shell CdTe/ZnS quantum dots with strong fluorescence and high relaxivity. J. Phys. Chem. C. 2013. 117. P. 18752–18761. DOI: 10.1021/jp406342m.

[28]. Majid A., Tanveer M., Rana U.A., Khan S. U.-D., Kousar S. Facile synthesis of Mn-doped CdTe nanoparticles: structural and magnetic properties, J. Supercond. Nov. Magn. 2016. 29. P. 2615-2619. DOI: 10.1007/s10948-016-3570-7.

[29]. Nag A., Sapra S., Nagamani C., Sharma A., Pradhan N., Bhat S.V., Sarma D.D. Study of Mn2+ doping in CdS nanocrystals. Chem. Mater. 2007. 19. P. 3252−3259. 10.1021/cm0702767.

[30]. Somaskandan K., Tsoi G.M., Wenger L.E., Brock S.L. Isovalent doping strategy for manganese introduction into III-V diluted magnetic semiconductor nanoparticles: InP:Mn. Chem. Mater. 2005. 17. P. 1190−1198. DOI: 10.1021/cm048796e.

[31]. Magana D., Perera S.C., Harter A.G., Dalal N.S., Strouse G.F. Switching-on superparamagnetism in Mn/CdSe quantum dots. J. Am. Chem. Soc. 2006. 128. P. 2931−2940. DOI: 10.1021/ja055785t.

[32.] Walsh W.M.Jr. Effects of hydrostatic pressure on the paramagnetic resonance spectra of several iron group ions in cubic crystals. Physical review. 1961. 122. P. 762−771. DOI: 10.1103/PhysRev.122.762.

[33]. Ludwig G.W., Woodbury H.H. Electron spin resonance in semiconductors. Solid State Physics. 1962. 13. P. 223-304. DOI: 10.1016/S0081-1947(08)60458-0

[34]. van Gisbergen S.J.C.H.M., Godlewski M., Kiewicz G.T., Ammerlaan C.A.J. Magnetic-resonance studies of interstitial Mn in GaP and GaAs. Physical Review B. 1991. 44. P. 3012−3019. DOI: 10.1103/PhysRevB.44.3012.

[35.] Mikulec F.V., Kuno M., Bennati M., Hall D.A., Griffin R.G., Bawendi M.G. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 2000. 122. P. 2532−2540. DOI: 10.1021/ja991249n.

[36]. Wang S., Jarrett B.R., Kauzlarich S.M., Louie A.Y. Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc. 2007. 129. P. 3848−3856. DOI: 10.1021/ja065996d.

[37]. Ding S.J., Liang S., Nan F., Liu X.L., Wang J. H., Zhou L., Yu X. F., Hao Z.H., Wang Q.Q. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots. Nanoscale. 2015. 7. P. 1970–1976. DOI: 10.1039/C4NR05731G.

[38]. Ayyaswamy A., Ganapathy S., Alsalme A., Alghamdi A., Ramasamy J. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells. Superlattices and Microstructures. 2015. 88. P. 634–644. DOI: 10.1016/j.spmi.2015.10.032.

[39]. Tian J.J., Lv L.L., Fei C.B., Wang Y.J., Liu X.G., Cao G.Z. A highly efficient (>6%) Cd1-xMnxSe quantum dot sensitized solar cell. Journal of Materials Chemistry A. 2014. 2. P. 19653–19659. DOI: 10.1039/C4TA04534C.

[40]. Wang J., Li Y., Shen Q., Izuishi T., Pan Z.X., Zhao K., Zhong X.H. Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A. 2015. 4. P. 877–886. DOI: 10.1039/C5TA09306F.

[41]. Ren G.H., Li Z.W., Wu W., Han S., Liu C.Y., Li Z.Q., Dong M.N., Guo W.B. Performance improvement of planar perovskite solar cells with cobalt-doped interface layer. Applied Surface Science. 2020. 507. P. 145081. DOI: 10.1016/j.apsusc.2019.145081.

[42]. Panda S.K., Hickey S.G., Demir H.V., Eychmüller A. Bright white-light emitting manganese and copper co-doped ZnSe quantum dots. Angewandte Chemie International Edition. 2011. 50. P. 4432–4436. DOI: 10.1002/anie.201100464.

[43]. Poornaprakash B., Kumar K.N., Chalapathi U., Reddeppa M., Poojitha P.T., Park S.H. Chromium doped ZnS nanoparticles: chemical, structural, luminescence and magnetic studies. Journal of Materials Science: Materials in Electronics. 2016. 27. P. 6474–6479. DOI: 10.1007/s10854-016-4588-0.

[44]. Kaur K., Lotey G.S., Verma N.K. Ferromagnetism in Gd-doped CdS dilute magnetic semiconducting nanorods. Journal of Materials Science. Materials in Electronics. 2014. 25. P. 311–316. DOI: 10.1007/s10854-013-1587-2.

[45]. Nabi Z., Ahuja R. Comparative study of Li codoping between: Mn (CdSe, CdTe) and Fe (CdSe, CdTe). The 15th International Meeting on Lithium Batteries-IMLB 2010.

[46]. Aguekian V.F., Gridneva L.K., Serov A.Y.U. The magnetic polaron effect in diluted magnetic semiconductor Cd1−xMnxTe with high concentration of manganese. Solid State Communications. 1993. 85. P. 859–862. DOI: 10.1016/0038-1098(93)90192-P.

[47]. Furdyna J.K. Diluted magnetic semiconductors. Journal of Applied Physics. 1988. 64. P. 29-64. DOI: 10.1063/1.341700.

[48]. Liu F., Morkoc¸ H. Ferromagnetism of ZnO and GaN: a review. Journal of Materials Science: Materials in Electronics. 2005. 16. P. 555–597. DOI: 10.1007/s10854-005-3232-1.

[49]. Pal B., Dhara S., Giri P.K., Sarkar D. Room temperature ferromagnetism with high magnetic moment and optical properties of co doped ZnO nanorods synthesized by a solvothermal route. Journal of Alloys and Compounds. 2014. 615. P. 378–385. DOI: 10.1016/j.jallcom.2014.06.087.

[50]. Santra P.K., Kamat P.V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012. 134. P. 2508–2511. DOI: 10.1021/ja211224s.

[51]. Tatarchuk T.R., Paliychuk N.D., Bououdina M., Al-Najar B., Pacia M., Macyk W., Shyichuk A. Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. Journal of Alloys and Compounds. 2018. 731. P. 1256–1266. DOI: 10.1016/j.jallcom.2017.10.103.

[52]. Zhai J., Wang L., Wang D., Zhang H. Li, Y., He D.Q., Xie T. Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces. 2011. 3 (7). Р. 2253–2258. DOI: 10.1021/am200008y.

[53] .Dedong H., Kai L.Y., Yu D.P. Multicolor photo detector of a single Er3+ doped CdS Nanoribbon. Nanoscale Res Lett. 2015. 285. P. 1–10. DOI: 10.1186/s11671-015-0975-3.

[54]. Yuan Y.J., Chen D., Yu Z.T., Zou Z.G. Cadmium sulfde-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A. 2018. 6. P. 11606-11630. DOI: 10.1039/C8TA00671G.

[55]. Fard N.E., Fazaeli R., Ghiasi R. Band gap energies and photocatalytic properties of CdS and Ag/CdS nanoparticles for azo dye degradation. Chem. Eng. Technol. 2016. 39. P. 149–157. DOI 10.1002/ceat.201500116.

[56]. Poornaprakash B., Chalapathi U., Poojitha P.T., Prabhakar Vattikuti S.V., Park S. Influence of gadolinium (III) doping on the structural, optical, magnetic, and photocatalytic properties of CdS quantum dots. Mater. Sci. Semicond. Process. 2019. 100. P. 73–78. DOI: 10.1016/j.mssp.2019.04.043.

[57]. Schlamp M.C., Peng X.G., Alivisatos A.P. Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 1997. 82. P. 5837–5842. DOI: 10.1063/1.366452.

[58]. Morales R.L., Angel O.Z., Delgado G.T. Photoluminescence in cubic and hexagonal CdS flms. Appl. Surf. Sci. 2001. 175-176. P. 562–566. DOI: 10.1016/S0169-4332(01)00115-5.

[59]. Banerjee R., Jayakrishnan R., Ayyub P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J. Phys. Condens. Matter. 2000. 12. P. 10647–10654. DOI: 10.1088/0953-8984/12/50/325.

[60]. Madhu C., Sundaresan A., Rao C.N.R. Room-temperature ferromagnetism in undoped GaN and CdS semiconductor nanoparticles. Phys. Rev. B. 2008. 77. 201306(R). DOI: 10.1103/PhysRevB.77.201306.

[61]. Yang Z., Gao D., Zhu Z., Zhang J., Shi Z., Zhang Z., Xue D. Ferromagnetism in sphalerite and wurtzite CdS nanostructures. Nanoscale Res. Lett. 2013. 8. P. 17. DOI: 10.1186/1556-276X-8-17.

[62]. Sudhagar P., Sathyamoorthy R., Chandramohan S., Senthilarasu S., Lee S.H. Synthesis of Cd1-xMnxS nanoclusters by surfactant-assisted method: structural, optical and magnetic properties. Mater. Lett. 2008. 62. P. 2430–2433. DOI: 10.1016/j.matlet.2007.12.013.

[63]. Sambandam B., Michael R.J.V., Rajendran N., Arumugam S., Manoharan P.T. Manganous ion dictated morphology change and ferromagnetism in CdS nanocrystals. J. Nanoparticle Res. 2012. 14. P. 1067. DOI: 10.1007/s11051-012-1067-2.

[64]. Giribabu G., Murali G., Reddy D.A., Liu C., Vijayalakshmi R.P. Structural, optical and magnetic properties of Co doped CdS nanoparticles. J. Alloys Compd. 2013. 581. P. 363–368. DOI: 10.1016/j.jallcom.2013.07.082.

[65]. Murali G., Reddy D.A., PoornaPrakash B., Vijayalakshmi R.P., Reddy B.K., Venugopal R. Room temperature magnetism of Fe doped CdS nanocrystals. Physica B Condensed Matter. 2012. 407. P. 2084–2088. DOI: 10.1016/j.physb.2012.02.011.

[66]. Srivastava P., Kumar P., Singh K. Room temperature ferromagnetism in magic- sized Cr-doped CdS diluted magnetic semiconducting quantum dots. J. Nanoparticle Res. 2011. 13. P. 5077–5085. DOI: 10.1007/s11051-011-0488-7.

[67]. G. Giribabu, G. Murali, D. Amaranatha Reddy, Chunli Liu, R. P. Vijayalakshmi. Structural, optical and magnetic properties of Co doped CdS nanoparticles. Jornal  of Alloys and Compounds. 2014. 126. P. 119–122. DOI: 10.1016/j.jallcom.2013.07.082.

[68]. Murali G., Reddy D. A., PoornaPrakash B., Vijayalakshmi R.P., Reddy B.K., Venugopal R. Room temperature magnetism of Fe doped CdS nanocrystals, Physica B. 2012. 407. P. 2084–2088, DOI: 10.1016/j.physb.2012.02.011.

[69]. Poornaprakash B., Subramanyamb K., Cheruku R., Kima Y.L., Reddy M.S. P., Reddy V.R.M. Mn and Al co-doped CdS:Cr nanoparticles for spintronic applications. Materials Science in Semiconductor Processing. 2021. 134. 106055. DOI: 10.1016/j.mssp.2021.106055.

[70]. B.R. Angel, A.H. Cuttler, K.S. Richards, W.E.J. Vincent Synthetic kaolinites doped with Fe2+ and Fe3+ ions. Clays Clay Miner. 1977. 25. P. 381–383. DOI: 10.1346/CCMN.1977.0250602.

[71]. Misra S.K., Andronenko S.I., Reddy K.M., Hays J., Thurber A., Punnoose A. A variable temperature Fe3+ electron paramagnetic resonance study of Sn1-xFexO2 (0.00< x < 0.05). J.Appl. Phys. 2007. 101. P. 09H120. DOI: 10.1063/1.2709752.

[72]. Sagar R. V., Buddhudu S. Synthesis and magnetic behaviuor of Mn:ZnO nanocrystalline powders. Spectrochim. Acta Part A. 2010. 75. P. 1218-1222. DOI: 10.1016/j.saa.2009.12.014.

[73]. Basha S.K.J., Khidhirbrahmendra V., Madhavi J., Thampy U.S.U., Reddy Ch.V., Ravikumar R.V.S.S.N. Structural, optical, magnetic and thermal investigations on Cr ions doped ZnS nanocrystals by co-pricipitation method. Journal of Science: Advanced Materials and Devices. 2019. 4. P. 260–266. DOI: 10.1016/j.jsamd.2019.03.002.

[74]. Bacaksiz E., Tomakin M., Altunbas M., Parlak M., Colakoglu T. Structural, optical and magnetic properties of Cd1− xCoxS thin films prepared by spray pyrolysis. Physica B: Condensed Matter. 2008. 403. P. 3740-3745. DOI: 10.1016/j.physb.2008.07.006.

[75]. Jie J.S., Zhang W.J., Jiang Y., Meng X.M., Li Y.Q., Lee S.T. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 2006. 6. P. 1887–1892. DOI: 10.1021/nl060867g.

[76]. Wu D., Jiang Y., Wang L., Li S.Y., Wu B., Yu Y.Q., Wu C.Y., Wang Z.B., Jie J.S. High-performance CdS:P nanoribbon field-effect transistors constructed with high-κ dielectric and top-gate geometry. Appl. Phys. Lett. 2010. 96. P. 123118. DOI: 10.1063/1.3360206.

Д.В. Корбутяк, О.Г. Косінов, Б.Н. Кульчицький

НАНОКРИСТАЛИ А2В6, ЛЕГОВАНІ МАГНІТНИМИ ДОМІШКАМИ (ОГЛЯД) 

Особливі властивості наноструктур А2В6, легованих перехідними металами, відкрили нові можливості для їх застосування в електроніці та оптоелектроніці, в сонячних батареях, для виготовлення короткохвильових світловипромінювальних та лазерних діодів, а чітко виражений феромагнетизм при кімнатній температурі дозволяє застосовувати їх в приладах спінтроніки. Крім того, чисті та леговані нанокристали ZnO, завдяки своїй нетоксичності, використовуються в біосенсорах, для доставки ліків та інших біологічних застосувань. Відомо, що сонячні елементи, сенсибілізовані квантовими точками, привертають велику увагу через їхні багатообіцяючі перспективи поліпшення ефективності перетворення енергії. Так, QDSC Zn-Cu-In-Se зберігають рекорд (PCE) - 12,98%. Але переваги КТ CdTe полягають у високому коефіцієнті екстинкції (105 см-1) та зручності синтезу. Крім того, CdTe має вужчу заборонену зону (1,5 еВ), що розширює діапазон поглинання світла до більш довгохвильових ділянок, а вищий край зони провідності прискорює інжекцію електронів із КТ CdTe у фотоанод. В даному огляді розглянуті різні варіанти синтезу легованих нанокристалів ZnO:Mn, CdTe:Mn/Со, CdS:Mn/Cr/Fe/Al, CdTe/ZnS:Mn. Також розглянуті методи дослідження структури та властивостей цих матеріалів, а саме: рентгеноструктурні дослідження, спектри фотолюмінесценції, поглинання та ЕПР. Окремо розглянуті магнітні властивості легованих нанокристалів А2В6. Наприкінці кожного розділу приділено увагу практичному застосуванню наноструктур А2В6, легованих магнітними домішками.

Ключові слова: нанокристали А2В6, магнітна домішка, квантова точка, синтез, оптичне поглинання, фотолюмінесценція, легування, феромагнетизм.