https://doi.org/10.15407/iopt.2021.56.027
Optoelectron. Semicond. Tech. 56, 27-38 (2021)
D. V. Korbutyak, I. M. Kupchak
SURFACE LUMINESCENCE OF A2B6 SEMICONDUCTOR QUANTUM DOTS (REVIEW)
Semiconductor zero-dimensional nanocrystals – quantum dots (QDs) – have been increasingly used in various fields of opto- and nanoelectronics in recent decades. This is because of the exciton nature of their luminescence, which can be controlled via the well known quantum-dimensional effect. At the same time, at small nanocrystall sizes, the influence of the surface on the optical and structural properties of nanocrystals increases significantly. The presence of broken bonds of surface atoms and point defects – vacancies and interstial atoms – can both weaken the exciton luminescence and create new effective channels of radiant luminescence. In some cases, these surface luminescence becomes dominant, leading to optical spectra broadening up to the quasi-white light. The nature of such localized states often remains unestablished due to the large number of the possible sorts of defects in both of QD and its surrounding. In contrast to exciton luminescence, which can be properly described within effective-mass approximations, the optical properties of defects relay on chemical nature of both defect itsself and its surrounding, what cannot be provided by “hydrogen-type coulomb defect” approximation. Moreover, charge state and related to this lattice relaxation must be taken into account, what requires an application of atomistic approach, such as Density functioal theory (DFT). Therefore, this review is devoted to the study of surface (defect) states and related luminescence, as well as the analysis of possible defects in nanocrystals of semiconductor compounds A2B6 (CdS, CdZnS, ZnS), responsible for luminescence processes, within ab initio approach. The review presents the results of the authors' and literature sources devoted to the study of the luminescent characteristics of ultra-small (<2 nm) QDs.
Keywords: quantum dots, defects, CdS, sourface luminescence.
References
1. Korbutyak D. V., Kovalenko O. V., Budzulyak S. I., Kalytchuk S. M., Kupchak I. M. Light-emitting properties of A2B6 semiconductor quantum dots. Ukr. J. Phys. Rev. 2012. 7.Р. 48-95.
2. Jones M., Lo, S. S., Scholes G. D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. U. S. A. 2009.106. Р.3011-6.
https://doi.org/10.1073/pnas.0809316106
3. Jones M. et al. On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 2010.20.Р. 3533- 3541.
https://doi.org/10.1039/c000165a
4. Kupchak I. M. et al. Exciton characteristics and exciton luminescence of silicon quantum dot structures. Semiconductors. 2006.40, 94.Р.103.
https://doi.org/10.1134/S1063782606010179
5. Kupchak I. M. et al. Exciton states and photoluminescence of silicon and germanium nanocrystals in an Al2O3 matrix. Semiconductors. 2008.42.Р. 1194-1199.
https://doi.org/10.1134/S1063782608100096
6. Kupchak I. M., Korbutyak D. V., Kalytchuk S. M., Kryuchenko Y. V., Chkrebtii A. Stokes shift in CdTe quantum dots. J. Phys. Stud. 2010.14. Р.2701.
https://doi.org/10.30970/jps.14.2701
7. Kaganovich E. B. et al. Exciton states and photoluminescence in Ge quantum dots. Nanotechnology. 2007.18. Р.295401.
https://doi.org/10.1088/0957-4484/18/29/295401
8. Ozel T. et al. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New J. Phys. 2008.10. Р.083035.
https://doi.org/10.1088/1367-2630/10/8/083035
9. Bel Haj Mohamed N. et al. Time resolved and temperature dependence of the radiative properties of thiol-capped CdS nanoparticles films. J. Nanoparticle Res. 2014. 16(2).Р.2242.
https://doi.org/10.1007/s11051-013-2242-9
10. Lü W., Tokuhiro Y., Umezu I., Sugimura A., Nagasaki Y. Trap state emission of water-soluble CdS nanocrystals. Phys. status solidi. 2009. 6. Р.346-349.
https://doi.org/10.1002/pssc.200879866
11. Uchihara T., Maedomari S., Komesu T., Tanaka K. Influences of proton-dissociation equilibrium of capping agents on the photo-chemical events of the colloidal solutions containing the thiol-capped cadmium sulfide particles. J. Photochem. Photobiol. A Chem. 2004.161.Р. 227-232.
https://doi.org/10.1016/j.nainr.2003.08.006
12. Rempel S. V., Levin A. D., Sadagov A. Yu., Rempel A. A. Opticheskie svojstva kvantovyh tochek sulfida kadmiya v vodnyh rastvorah. FTT. 2015.57.S. 1087-1091.
https://doi.org/10.1134/S106378341506027X
13. Korbutyak D. V., Kalytchuk S., Khalavka Y. B., Shcherbak L. Temperature dependence of photoluminescence of CdTe quantum dots in a polymer matrix. Ukr. J. Phys. 2010.55.Р. 822-826.
14. Smyntyna V., Skobeeva V., Malushin N. The nature of emission centers in CdS nanocrystals. Radiat. Meas. 2007.42.Р. 693-696.
https://doi.org/10.1016/j.radmeas.2007.01.068
15. Roshima N. S., Saravana Kumar S., Uma Maheswari A., Sivakumar M. Study on Vacancy Related Defects of CdS Nanoparticles by Heat Treatment. J. Nano Res. 2012. 18-19.Р. 53-61.
https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.53
16. Shepidchenko A., Sanyal B., Klintenberg M., Mirbt S. Small hole polaron in CdTe: Cd-vacancy revisited. Sci. Rep. 2015. 5.Р. 1-6.
https://doi.org/10.1038/srep14509
17. Sposib sintezu visokochistih koloyidnih rozchiniv nanokristaliv kadmiyu teluridu: pat. 116463 Ukrayina: MPK S30 29/46(2006.01). №u201611524;zayavl.14.11.16;opubl.25.05.17,Byul.№10.7 s.
18. Li W. F., Fang C. M., Dijkstra M., Van Huis M. A. The role of point defects in PbS, PbSe and PbTe: A first principles study. J. Phys. Condens. Matter. 2015.27.Р. 355801.
https://doi.org/10.1088/0953-8984/27/35/355801
19. Brawand N. P., Goldey M. B., Vörös M., Galli G. Defect States and Charge Transport in Quantum Dot Solids. Chem. Mater. 2017.29. Р.1255-1262.
https://doi.org/10.1021/acs.chemmater.6b04631
20. Wei S.-H., Zhang S. B., Zunger A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 2000.87.Р. 1304-1311.
https://doi.org/10.1063/1.372014
21. Muruganandam S., Anbalagan G., Murugadoss G. Synthesis and structural, optical and thermal properties of CdS:Zn2+ nanoparticles. Appl. Nanosci. 2014. 4.Р. 1013-1019.
https://doi.org/10.1007/s13204-013-0284-z
22. Mandal P., Talwar S. S., Major S. S., Srinivasa R. S. Orange-red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir-Blodgett multilayers. J. Chem. Phys. 2008.128. Р.114703.
https://doi.org/10.1063/1.2888930
23. Liu Y. et al. The effect of defects on Cu-doped CdS: A first-principles study. 2017.EPL 117. Р.57007.
https://doi.org/10.1209/0295-5075/117/57007
24. Mohapatra J. Defect-related blue emission from ultra-fine Zn1−xCdxS quantum dots synthesized by simple beaker chemistry. Int. Nano Lett. 2013. 3.Р. 31.
https://doi.org/10.1186/2228-5326-3-31
25. Stouwdam J. W., Janssen R. A. J. Electroluminescent Cu-doped CdS Quantum Dots. Adv. Mater. 2009.21.Р. 2916-2920.
https://doi.org/10.1002/adma.200803223
26. Choi D., Pyo J.-Y., Jang D.-J. Impurity Location-Dependent Relaxation Dynamics of Cu:CdS Quantum Dots. Nanoscale Res. Lett. 2017.12.Р. 49.
https://doi.org/10.1186/s11671-017-1832-3
27. Mishra M. K., Kundu S., De, G. Stable fluorescent CdS:Cu QDs and their hybridization with carbon polymer dots for white light emission. J. Mater. Chem. C. 2016. 4.Р. 1665-1674.
https://doi.org/10.1039/C5TC03821A
28. Xuan T.-T., Liu J.-Q., Xie R.-J., Li H.-L., Sun Z. Microwave-Assisted Synthesis of CdS/ZnS:Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chem. Mater. 2015.27.Р. 1187-1193.
https://doi.org/10.1021/cm503770w
29. Korbutyak D. V. et al. Optichni ta strukturno-defektni harakteristiki nanokristaliv CdS:Cu i CdS:Zn, sintezovanih v polimernih matricyah. Fizika i himiya tverdogo tila. 2013.14.S. 222-227.
30. Unni C., Philip D., Smitha S. L., Nissamudeen K. M., Gopchandran K. G. Aqueous synthesis and characterization of CdS, CdS:Zn(2+) and CdS:Cu(2+) quantum dots. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009.72. Р.827-32.
https://doi.org/10.1016/j.saa.2008.11.027
31. Korbutyak D. V. et al. Sintez, lyuminescentni ta strukturni vlastivosti nanokristaliv Cd1-xCuxS i Cd1-xZnxS. Zh. nanoelektron. fiz. 2017. 9. R.05024.
32. Tkach M. V., Holovatsky V. A., Berezovsky Y. M. Spectrum and wave functions of the hydrogenlike impurity in the spherical quantum dot embedded into the medium. Phys. Chem. Solid State. 2003.4.Р. 213-220.
33. Holovatsky V. A., Frankiv I. B. Oscillator strength of quantum transition in multi-shell quantum dots with impurity. J. Optoelectron. Adv. Mater. 2013.15.Р. 88-93.
34. Yang C.-C., Liu L.-C., Chang S.-H. Eigenstates and fine structure of a hydrogenic impurity in a spherical quantum dot. Phys. Rev. B. 1998. 58.Р. 1954-1961.
https://doi.org/10.1103/PhysRevB.58.1954
35. Zhu J.-L., Xiong J.-J., Gu B.-L. Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1−xAlxAs. Phys. Rev. B. 1990.41. Р.6001-6007.
https://doi.org/10.1103/PhysRevB.41.6001
36. Montes A., Duque C. A., Porras-Montenegro N. Density of States of a Donor Impurity in a GaAs Quantum Box under the Action of an Applied Electric Field. Phys. status solidi. 2000.220.Р. 181-185.
https://doi.org/10.1002/1521-3951(200007)220:1<181::AID-PSSB181>3.0.CO;2-0
37. Chena L.-Y. et al. Surface Modification of CdSe and CdS Quantum Dots-Experimental and Density Function Theory Investigation. in Nanocrystals - Synthesis, Characterization and Applications (ed. Neralla, S.) (InTech, 2012).
38. de Queiroz A. A. A., Martins M., Soares D. A. W., França É. J. Modeling of ZnS quantum dots synthesis by DFT techniques. J. Mol. Struct. 2008. 873.Р. 121-129.
https://doi.org/10.1016/j.molstruc.2007.03.013
39. Swenson N. K., Ratner M. A., Weiss E. A. Computational Study of the Influence of the Binding Geometries of Organic Ligands on the Photoluminescence Quantum Yield of CdSe Clusters. J. Phys. Chem. C. 2016.120.
https://doi.org/10.1021/acs.jpcc.5b12770
Р. 6859-6868.
40. Voznyy O., Mokkath J. H., Jain A., Sargent E. H., Schwingenschlögl, U. Computational study of magic-size CdSe clusters with complementary passivation by carboxylic and amine ligands. J. Phys. Chem. C. 2016. 120.
https://doi.org/10.1021/acs.jpcc.5b10908
Р. 10015-10019.
41. Chou H.-L., Tseng C.-H., Pillai K. C., Hwang B.-J., Chen L.-Y. Surface Related Emission in CdS Quantum Dots. DFT Simulation Studies. J. Phys. Chem. C. 2011.115. Р.20856-20863.
https://doi.org/10.1021/jp2046382
42. Xu S. et al. Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics. Luminescence.2016.31. Р.312-6.
https://doi.org/10.1002/bio.3056
43. Wen B., Melnik R. V. N. First principles molecular dynamics study of CdS nanostructure temperature-dependent phase stability. Appl. Phys. Lett. 2008.92.Р. 43-46.
https://doi.org/10.1063/1.2952835
44. Rayevska O. E. et al. Synthesis and Characterization of White-Emitting CdS Quantum Dots Stabilized with Polyethylenimine. J. Phys. Chem. C. 2010.114. Р.22478-22486.
https://doi.org/10.1021/jp108561u
45. Dzhagan V. M. et al. Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. C. 2014.118. Р.19492-19497.
https://doi.org/10.1021/jp506307q
46. Chen H. S., Kumar R. V. Discontinuous Growth of Colloidal CdSe Nanocrystals in the Magic Structure. J. Phys. Chem. C. 2009.113.Р. 31-36.
https://doi.org/10.1021/jp809360n
47. Park Y.-S. et al. Aqueous Phase Synthesized CdSe Nanoparticles with Well-Defined Numbers of Constituent Atoms. J. Phys. Chem. C. 2010.114.Р. 18834-18840.
https://doi.org/10.1021/jp107608b
48. Fischer S. A., Crotty A. M., Kilina S. V., Ivanov S. A., Tretiak S. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale. 2012.4.Р. 904-914.
https://doi.org/10.1039/C2NR11398H
49. Kuznetsov A. E., Beratan D. N. Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. J. Phys. Chem. C. 2014.118. Р.7094-7109.
https://doi.org/10.1021/jp4007747
50. Kilina S., Ivanov S., Tretiak S. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J. Am. Chem. Soc. 2009.Р.7717-7726.
https://doi.org/10.1021/ja9005749
51. Puzder A., Williamson A. J., Gygi F., Galli G. Self-healing of CdSe nanocrystals: First-principles calculations. Phys. Rev. Lett. 2004.92.Р. 1-4.
https://doi.org/10.1103/PhysRevLett.92.217401
52. Li J., Wang L.-W. Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B. 2005.72. Р.125325.
https://doi.org/10.1103/PhysRevB.72.125325
53. Rudko G. Y. et al. Luminescent and Optically Detected Magnetic Resonance Studies of CdS/PVA Nanocomposite. Nanoscale Res. Lett. 2017.12.Р. 130.
https://doi.org/10.1186/s11671-017-1892-4
54. Skobeeva V. M., Smyntyna V. A., Sviridova O. I., Struc D. A., Tyurin A. V. Opticheskie svojstva nanokristallov sulfida kadmiya, poluchennyh zol-gel metodom v zhelatine. Zhurnal prikladnoj spektroskopii. 2008. 75.S. 556-562.
https://doi.org/10.1007/s10812-008-9074-x
55. Lee H., Yang H., Holloway P. H. Functionalized CdS nanospheres and nanorods. Phys. B. 2009.404. Р.4364-4369.
https://doi.org/10.1016/j.physb.2009.09.020
56. Yuan S. Q., Ji P. F., Li Y., Song Y. L., Zhou F. Q. Unusual Blueshifting of Optical Band Gap of CdS Nanocrystals through a Chemical Bath Deposition Method. Adv. Optoelectron. 2015. Р.1-5.
https://doi.org/10.1155/2015/317108
57. Smintina V., Semenenko B., Skobyeyeva V., Malushin, M. Vpliv poverhni nanokristaliv CdS na yihni lyuminescentni vlastivosti. Elektronika ta informacijni tehnologiyi. 2012.S.45-50.
58. Kupchak I. M., Serpak N. F., Kapush O. A., Korbutyak D. V. Elektronni harakteristiki poverhnevih vakansij u nanokristalah CdS. Fizika i himiya tverdogo tila. 2018.19.S. 34-39.
https://doi.org/10.15330/pcss.19.1.34-39
59. Muruganandam S., Anbalagan G., Murugadoss G. Synthesis and structural, optical and thermal properties of CdS:Zn2+ nanoparticles. Appl. Nanosci. 2014. 4. Р.1013-1019.
https://doi.org/10.1007/s13204-013-0284-z
60. Orii T., Kaito S., Matsuishi K., Onari S., Arai T. Photoluminescence of CdS nanoparticles suspended in vacuum and its temperature increase by laser irradiation. J. Phys. 2002.14. Р.9743-9752.
https://doi.org/10.1088/0953-8984/14/41/329
61. Kumari L., Kar A. K. Compositional variation dependent colour tuning and observation of Förster resonant energy transfer in Cd(1-X)ZnxS nanomaterials. New J. Chem. 2020. 44. Р. 870-883.
https://doi.org/10.1039/C9NJ05199F
62. Milekhin A. G. et al. CdZnS quantum dots formed by the Langmuir-Blodgett technique. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2013.31.
https://doi.org/10.1116/1.4810782
63. Wu K., Li H., Klimov V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics. 2018.12.С. 105-110.
https://doi.org/10.1038/s41566-017-0070-7
64. Kupchak I. M., Korbutyak D. V, Serpak N. F., Shkrebtii A. Metal vacancies in Cd1-xZnxS quantum dots. Semicond. Physics, Quantum Electron. Optoelectron. 2020.23.Р. 66-70.
https://doi.org/10.15407/spqeo23.01.066
65. Kupchak I. M., Korbutyak D. V., Serpak N. F. Vlasni defekti u kvantovih tochkah CdZnS. Sensorna elektronika i mikrosistemni tehnologiyi. 2020. 17. S. 50-59.
Д. В. Корбутяк, І. М. Купчак
ПОВЕРХНЕВА ЛЮМІНЕСЦЕНЦІЯ НАПІВПРОВІДНИКОВИХ КВАНТОВИХ ТОЧОК А2В6 (Огляд)
Напівпровідникові нуль-мірні нанокристали – квантові точки (КТ) – в останні десятиліття знаходять все ширше застосування в різних областях опто- і наноелектроніки. Квантовим точкам притаманна екситонна природа люмінесценції, керувати якою можна завдяки відомому квантово-розмірному ефекту. У той же час, при малих розмірах КТ, значно зростає вплив поверхні на оптичні та структурні властивості нанокристалів. Наявність обірваних зв'язків поверхневих атомів та точкових дефектів – вакансій і міжвузлових атомів – можуть як послабити екситонну люмінесценцію, так і створити нові ефективні канали випромінювальної люмінесценції. Цей огляд присвячений дослідженню поверхневих (дефектних) станів та пов’язаної з ними люмінесценції, а також аналізу можливих дефектів у нанокристалах напівпровідникових сполук A2B6 (CdS, CdZnS, ZnS), відповідальних за процеси люмінесценції. В огляді приведені результати робіт авторів та літературних джерел, присвячених дослідженню люмінесцентних характеристик КТ ультрамалих (<2 нм) розмірів.
Ключові слова: квантові точки, дефекти, вакансія, CdS, поверхнева люмінесценція.