1. ISO СІЕ TR 21783:2022. Light and lighting - Integrative lighting - Non-visual effects. https://www.iso.org/ru/standard/71623.html.
2. CIE S 017/E:2020 ILV: International Lighting Vocabulary, 2nd Edition. DOI 10.25039/S017.2020.
3. Charles Jarboe, J Snyder, Mariana Figueiro. The effectiveness of light-emitting diode lighting for providing circadian stimulus in office spaces while minimizing energy use. Lighting Research and Technology. April 2019.52, №2:147715351983460. DOI:10.1177/1477153519834604.
https://doi.org/10.1177/1477153519834604
4. DSTU EN 12464-1:2016. Svitlo ta osvitlennia. Osvitlennia robochykh mists. Chastyna 1. Vnutrishni robochi mistsia (EN 12464-1:2011, IDT).
5. ISO СІЕ 8995-1:2025. Light and lighting - Lighting of work places. Part 1: Indoor. https://www.iso.org/ru/standard/76342.html.
6. CIE S 026/E: 2018 CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Lighthttps://cie.co.at/publications/cie-system-metrology-optical-radiation-iprgc-influenced-responses-light-0.
7. Kevin W. Houser, Tony Esposito. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front Neurol. Jan. 2021. 27:12:630553. doi: 10.3389/fneur.2021.630553.
https://doi.org/10.3389/fneur.2021.630553
8. Baraa J. Alkhatatbeh, Somayeh Asadi. Role of Architectural Design in Creating Circadian-Effective Interior Settings. Energies. 2021. 14, №20. 6731. https://doi.org/10.3390/en14206731
https://doi.org/10.3390/en14206731
9. DSTU EN 15193-1:2017. Enerhoefektyvnist budivel. Enerhetychni vymohy do osvitlennia. Chastyna 1. Tekhnichni kharakterystyky, Modul M9 (EN 15193-1:2017, IDT).
10. DBN V.2.5-28:2018. Pryrodne i shtuchne osvitlennia: Derzhavni budivelni normy Ukrainy. Kyiv: Minrehion Ukrainy. 2018. 90 s.
11. Maurizio Rossi. Circadian Lighting Design in the LED Era. January 2019. 277. ISBN: 978-3-030-11086-4. DOI:10.1007/978-3-030-11087-1.
https://doi.org/10.1007/978-3-030-11087-1
12. ISO 15469:2004 (Е)/СІЕ S 011/Е2023. Spatial distribution of daylight - CIE standard general sky. https://www.iso.org/ru/standard/38608.html.
13. Tobias Kristiansen, Thomas K. Thiis, Ingunn Burud, Arnkell Jonas Petersen. Spectral Dynamics and Spatial Variations in Indoor Daylight Quality: A Case Study. Lecture Notes in Civil Engineering. 2024. Р.298-303. DOI:10.1007/978-981-97-8317-5_44.
https://doi.org/10.1007/978-981-97-8317-5_44
14. Tobias Kristiansen, Thomas Thiis, Ingunn Burud, Arnkell Jonas Petersen. Measurements of spectral daylight variation in spaces: A case study. E3S Web of Conferences.August 2024. 562. DOI:10.1051/e3sconf/202456201002.
https://doi.org/10.1051/e3sconf/202456201002
15. A. Sepúlveda, S.S.S. Salehi, F. De Luca, M. Thalfeldt. Solar radiation-based method for early design stages to balance daylight and thermal comfort in office buildings. Front. Architect. Research. 2023.№12. Р.1030-1046.
https://doi.org/10.1016/j.foar.2023.07.001
16. D. D'Agostino, F. Minelli, F. Minichiello. New genetic algorithm-based workflow for multi-objective optimization of Net Zero Energy Buildings integrating robustness assessment. Energy Build. 2023.284. Article 112841.
https://doi.org/10.1016/j.enbuild.2023.112841
17. Y. Zeng, H. Sun, B. Lin. Optimized lighting energy consumption for non-visual effects: a case study in office spaces based on field test and simulation. Build. Environ. 2021. 205. Article 108238.
https://doi.org/10.1016/j.buildenv.2021.108238
18. Q. Yao, W. Cai, M. Li, Z. Hu, P. Xue, Q. Dai. Efficient circadian daylighting: a proposed equation, experimental validation, and the consequent importance of room surface reflectance. Energy Build. 2020. 210.
https://doi.org/10.1016/j.enbuild.2020.109784
19. Laura Bellia, Urszula Błaszczak, Francesca Diglio, Francesca Fragliasso. Light-environment interactions and integrative lighting design: Connecting visual, non-visual and energy requirements in a case study experimen. Building and Environment. April 2024. 253, №1. 111323/ https://doi.org/10.1016/j.buildenv.2024.111323.
https://doi.org/10.1016/j.buildenv.2024.111323
20. Q. Dai, Y. Huang, L. Hao, Y. Lin, K. Chen. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environment. 2018.146.Р. 216-225.
https://doi.org/10.1016/j.buildenv.2018.10.004
21. P. Hartman, L. Maňková, P. Hanuliak, M. Krajčík. The influence of internal coloured surfaces on the circadian efficiency of indoor daylight. Applied Mechanics and Materials, Trans Tech Publ. 2017.Р.493-500.
https://doi.org/10.4028/www.scientific.net/AMM.861.493
22. J. Hraška, P. Hartman. Daylighting: prediction of circadian effects of different spectral filters. Advanced Materials Research, Trans Tech Publ. 2014. Р.386-389.
https://doi.org/10.4028/www.scientific.net/AMR.1041.386
23. Yeh, L., et al. Autonomous light control by wireless sensor and actuator networks. IEEE Sensors Journal. 2010.10, №6. Р.1029-1041. https://doi.org/10.1109/jsen.2010.2042442.
https://doi.org/10.1109/JSEN.2010.2042442
24. Kyslytsia D.V., Basova YU.O., Kyslytsia S.H., Kozhushko H.M., Zakharchenko R.V. Systemy avtomatychnoho keruvannia osvitlenniam - efektyvnyi shliakh ekonomii elektroenerhii ta pidvyshchennia yakosti osvitlennia. Systemy upravlinnia, navihatsii ta zv'iazku. Zbirnyk naukovykh prats. 2024. 4, №78.
https://doi.org/10.26906/SUNZ.2024.4.031
25. Lucas RJ, et al. Measuring and using light in the melanopsin age.Trends in Neurosciences. January 2014. 37, Issue 1. Р.1-9. https://doi.org/10.1016/j.tins.2013.10.004.
https://doi.org/10.1016/j.tins.2013.10.004
26. Kozhushko H.M., Sakhno T.V., Nazarenko V.I. Non-visual effects of light and their significance in led lighting systems designing: a critical review of the integrated lighting problem. Ukrainian Journal of Occupational Health. 2024.20, №3. Р.214-227. DOI:10.33573/ujoh2024.03.214.
https://doi.org/10.33573/ujoh2024.03.214