https://doi.org/10.15407/jopt.2018.53.220

K.V. Kostyukevych, Yu.M. Shirshov, R.V. Khristosenko, A.V. Samoylov, Yu.V. Ushenin, S.A. Kostyukevych, A.A. Koptiukh

ANGULAR SPECTRUM PECULIARITIES OF SURFACE PLASMON-POLARITON RESONANCE UNDER INVESTIGATION OF LATEX WATER SUSPENSION IN THE KRETSCHMANN GEOMETRY

In this work, the possibility of description of the turbid medium (suspension of the light-scattering spherical particles in water) at the interface with glass and gold surface, based on simultaneous measurement of total internal reflection (TIR) and surface plasmon resonance (SPR) angles, and aimed to increase the informativity of optical methods when studying samples of biological origin and to facilitate creation of new sensor systems, is investigated theoretically and experimentally. Proposed theoretical approach takes into account the excess of particles at the surface caused by sedimentation, and the presence of transitional layer near the surface with continuous change of refraction index in the direction from the surface toward the suspension bulk. The near-surface area is defined as a set of thin layers, each characterized by its specific thickness and refraction index, calculated according to the Bruggeman effective medium theory. For the simulated “glass — gold film — latex suspension of spherical particles” system, TIR (FTIR) and SPR (FSPR) angle values were calculated. An unambiguous relationship between the measured angles and the particles concentration and size is demonstrated, as well as possibility to determine the degree of surface excess of the particles. The presence of intermediate layer with reduced refraction is proven, explained by the restriction of molecular movement of the opaque particles by the surface. Simulation of the refraction gradient has shown that the TIR angle increases linearly with the increasing concentration of particles in suspension regardless of their size in accordance with the Bruggeman’s rule. The rate of SPR angle increase with the increasing concentration of particles lags behind the rate of TIR angle increase, and the lag increases systematically with the increasing concentration. The peculiarities of internal reflection of light R(F) in Kretschmann geometry for aqueous suspension of polystyrene spherical particles 200 nm and 920 nm in size were investigated using a compact computerized “Plasmon” series instrument; qualitative agreement of the experimental results with model simulations was observed.

Keywords: surface plasmon resonance, effective medium, suspension, polystyrene spheres, sedimentation.

References

1. Poverhnostnye polyaritony. Elektromagnitnye volny na poverhnostyah i granicah razdela sred /V. M. Agranovich, D. L. Mills. - M .: Nauka, 1985. - 525 s. (in Russian)

2. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108 (2008) 462-493.

https://doi.org/10.1021/cr068107d

3. Kostyukevich E.V., Kostyukevich S.A. Sensor poverhnostnogo plazmonnogo rezonansa dlya opredeleniya urovnya barbituratov v zhidkoj probe. Optoelektronika i poluprovodnikovaya tehnika, V.45 (2010) 130-136. (in Russian)

4. Kostyukevich E.V., Kostyukevich S.A. Reakcionnyj otzhig kak sposob passivacii i stabilizacii poverhnostej biosensorov. Optoelektronika i poluprovodnikovaya tehnika, V.46 (2011) 122-129. (in Russian)

5. Patent UA 46018 C2. MPK6: G01N 21/55. Sposib detektuvannya ta viznachennya koncentraciyi biomolekul ta molekulyarnih kompleksiv ta pristrij dlya jogo zdijsnennya. Yu. M. Shirshov, Ye. F. Venger, A. V. Prohorovich, Yu. V. Ushenin, Ye. P. Macas, V. I. Chegel, A. V. Samojlov. №97105153, Zayavl. 22.10.1997; Opubl. 15.05.2002, Byul. № 5. (in Ukrainian)

6. Shirshov Y. M., Chegel V. I., Subota Y. V., Matsas E. P., Kostioukevich E. V., Rachcov A. E., Merker R. Biosensors based on SPR and optimization of their working parameters, Proc. of SPIE, 2780 (1995) 257-260.

https://doi.org/10.1117/12.238166

7. Kostyukevich S.O., Kostyukevich K.V., Hristosenko R.V., Koptyuh A.A., Moskalenko N.L., Lisyuk V.O., Pogoda V.I. Sensor poverhnevogo plazmonnogo rezonansu z chutlivim elementom na polimernij osnovi. Optoelektronika i poluprovodnikovaya tehnika, V.51 (2016) 143-149. (in Ukrainian)

8. Khrystosenko R. V. Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity. Semiconductor Physics, Quantum Electronics and Optoelectronics, V.18, No.3 (2015) 279-285.

https://doi.org/10.15407/spqeo18.03.279

9. Kostyukevych K. V. Transducer based on surface plasmon resonance with thermal modification of metal layer properties. Semiconductor Physics, Quantum Electronics and Optoelectronics, V.19, No.3 (2016) 255-266.

https://doi.org/10.15407/spqeo19.03.255

10. Lysenko S. I., Snopok B. A., Sterligov V. A., Kostyukevich E. V., Shirshov Yu. M. Light scattering by molecular-organized films on the surface of polycrystalline gold. Optics and Spectroscopy, V.90, No.4 (2001) 606-616.

https://doi.org/10.1134/1.1366757

11. Kostyukevych K. V., Khristosenko R. V., Pavluchenko A. S., Vakhula A. A., Kazantseva Z. I., Koshets I. A., Shirshov Yu. M. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B, 223 (2016) 470-480.

https://doi.org/10.1016/j.snb.2015.09.123

12. Kostyukevych K. V., Khristosenko R. V., Shirshov Yu. M., Kostyukevych S. A., Samoylov A. V., Kalchenko V. I. Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semiconductor Physics, Quantum Electronics and Optoelectronics, V.14, No.3 (2011) 313-320.

https://doi.org/10.15407/spqeo14.03.313

13. Hristosenko R.V., Kostyukevich E.V., Zyno S.A., Pavlyuchenko A.S., Samojlov A.V., Ushenin Yu.V., Kostyukevich S.A., Kalchenko V.I. Gazovyj sensor na poverhnostnyh plazmonah dlya raspoznavaniya spirtov s ispolzovaniem chuvstvitelnyh plenok kaliksarenov. Optoelektronika i poluprovodnikovaya tehnika, V.45 (2010) 137-144. (in Russian)

14. Khristosenko R. V. Optimization of surface plasmon resonance based biosensor for clinical diagnosis of the Epstein-Barr herpes virus disease. Semiconductor Physics, Quantum Electronics and Optoelectronics, V.19, No.1 (2016) 84-89.

https://doi.org/10.15407/spqeo19.01.084

15. Hristosenko R.V., Nesterova N.V.,Kostyukevich E.V., Zagorodnyaya S.D., Baranova G.V., Golovan A.V., Ushenin Yu.V., Samojlov A.V., Kostyukevich S.A. Immunosensor na osnove poverhnostnogo plazmonnogo rezonansa dlya opredeleniya antitel protiv virusa Epshtejna-Barr. Optoelektronika i poluprovodnikovaya tehnika, V.46 (2011) 92-99. (in Russian)

16. Kostyukevych S.O., Kostyukevych K.V., Khristosenko R.V., Lysiuk V.O., Koptyukh A.A., Moscalenko N.L. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system. Optical Engineering, 56(12), (2017) 121907.

https://doi.org/10.1117/1.OE.56.12.121907

17. Kostyukevich E.V., Hristosenko R.V., Ushenin Yu.V., Samolov A.V., Kostyukevich S.A. Immunosensor poverhnostnogo plazmonnogo rezonansa s povyshennoj chuvstvitelnostyu i stabilnostyu dlya detektirovaniya fibrinogena, rastvorimogo fibrina i D-dimera v plazme krovi cheloveka. Optoelektronika i poluprovodnikovaya tehnika, V.47 (2012) 70-76. (in Russian)

18. Sensorni priladi na osnovi poverhnevogo plazmonnogo rezonansu. Monografiya / G. V. Dorozhinskij, V. P. Maslov, Yu. V. Ushenin / Nac. akad. nauk Ukrayini, In-t fiziki napivprovidnikiv. - Kiyiv: NTUU "KPI", 2016. - 264 s. (in Ukrainian)

19. Kostioukevich S.A., Shirshov Y. M., Matsas E. P., Chegel V. I., Stronski A. V., Subbota Y. V., Shepelyavi P. E. Application of surface plasmon resonance for the investigation of ultrathin metal films. Proc. of SPIE, V.2648 (1995)144-151.

https://doi.org/10.1117/12.226156

20. Kostyukevich S.O., Hristosenko R. V., Kostyukevich K.V., Koptyuh A.A., Surovceva O.R., Kryuchin A.A. Molekulyarnij analiz tonkih plivok riznoyi prirodi na osnovi spektroskopiyi poverhnevih plazmoniv. Reyestraciya, zberigannya i obrobka danih, T.20, №4 (2018). 3-20. (in Ukrainian)

21. Peiponen K.-E., Raty J., Vartianinen E.M., Sugiura T., Kawata S. Optical constants of industrial liquids obtained by phase retrieval from reflectometric and surface-plasmon-resonance data. Meas.Sci.Technol., 10 (1999) 145-148.

https://doi.org/10.1088/0957-0233/10/12/404

22. Peiponen K.-E., Gornov E. On prediction of optical properties of two- and multiphase nanocomposites for nanomedicine. International Journal of Nanomedicine, V.2, No.4 (2007) 799-804.

23. Jaaskelainen A. J., Peiponen K.-E., Raty J. A., Dairy J. On Reflectometric Measurement of a Refractive Index of Milk. Journal of Dairy Science, V.84, No.1 (2001) 38-43.

https://doi.org/10.3168/jds.S0022-0302(01)74449-9

24. Zilio S. C. A simple method to measure critical angles for high-sensitivity differential refractometry. OPTICS EXPRESS, V.20, No.2 (2012) 1862-1867.

https://doi.org/10.1364/OE.20.001862

25. Quinn J. G., O'Neill S., Doyle A., McAtamney C., Diamond D., MacCraith B. D., O'Kennedy R. Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Analytical Biochemistry, 281 (2000) 135-143.

https://doi.org/10.1006/abio.2000.4564

26. Li B., Chen J., Long M. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique. Analytical Biochemistry, 377 (2008) 195-201.

https://doi.org/10.1016/j.ab.2008.03.030

27. Vikinge T. P., Hansson K. M., Benesch J, Johansen K, Ranby M, Lindahl T. L. Blood plasma coagulation studied by surface plasmon resonance. J Biomed Optics, 5 (2000) 51-56.

https://doi.org/10.1117/1.429968

28. Hansson K.M., Johansen K., Wettero J., Klenkar G., Benesch J., Lundstrom I., Lindahl T. L., Tengvall P. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosensors and Bioelectronics, 23 (2007) 261-268.

https://doi.org/10.1016/j.bios.2007.04.009

29. Mazumdar S. D., Barlen B., Kämpfer P., Keusgena M. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosensors and Bioelectronics, 25 (2010) 967-971.

https://doi.org/10.1016/j.bios.2009.04.002

30. Robelek R., Wegener J. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosensors and Bioelectronics, 25 (2010) 1221-1224.

https://doi.org/10.1016/j.bios.2009.09.016

31. Hide M., Tsutsui T., Sato H., Nishimura T., Morimoto K., Yamamoto S., Yoshizato K. Real-Time Analysis of Ligand-Induced Cell Surface and Intracellular Reactions of Living Mast Cells Using a Surface Plasmon Resonance-Based Biosensor. Analytical Biochemistry, 302 (2002) 28-37.

https://doi.org/10.1006/abio.2001.5535

32. Tanaka M., Hiragun T., Tsutsui T., Yanase Y., Suzuki H., Hide M. Surface plasmon resonance biosensor detects the downstream events of active PKC in antigen-stimulated mast cells. Biosensors and Bioelectronics, 23 (2008) 1652-1658.

https://doi.org/10.1016/j.bios.2008.01.025

33. Chabot V., Cuerrier C. M., Escher E., Aimez V., Grandbois M., Charette P. G Biosensing Based On Surface Plasmon Resonance And Living Cells. Biosensors and Bioelectronics, V.24, No.6 (2009) 1667-1674.

https://doi.org/10.1016/j.bios.2008.08.025

34. Chabot V., Miron Y., Charette P. G., Grandbois M. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy. Biosensors and Bioelectronics, 50 (2013) 125-131.

https://doi.org/10.1016/j.bios.2013.06.018

35. Van de Hulst H. C. Light Scattering by Small Particles. JohnWiley, NewYork, (1957).

https://doi.org/10.1063/1.3060205

36. Champion J. V., Meeten G. H., Senior M. Refractive index of particles in the colloidal state. J.Chem.Soc., Faraday Trans., 74 (1978) 1319-1329.

https://doi.org/10.1039/f29787401319

37. Champion J. V., Meeten J. V., Senior M. Refraction by spherical colloid particles. J.Coll.Interf.Science. 72/3 (1979) 471-482.

https://doi.org/10.1016/0021-9797(79)90348-5

38. Alexander K., Killey A., Meeten G., Senior M. Refractive index of concentrated colloidal dispersions. J.Chem.Soc., Faraday Trans., 77 (1981) 361-372.

https://doi.org/10.1039/f29817700361

39. Meeten G. H., North E. Refractive index measurement of turbid colloidal fluids by transmission near the critical angle. Meas.Sci.Technol., 2 (1991) 441-447.

https://doi.org/10.1088/0957-0233/2/5/005

40. Jarvis P. R., Meeten G. H. Critical angle measurement of refractive index of absorbing materials: an experimental study. J. Phys. E: Sci.Instrum, 19 (1986) 296-298.

https://doi.org/10.1088/0022-3735/19/4/010

41. Optika malih chastinok i dispersnih seredovish. Monografiya / Ye. F. Venger, A. V. Goncharenko, M. L. Dmitruk / Nac. akad. nauk Ukrayini, In-t fiziki napivprovidnikiv. - K.: Naukova Dumka, 1999. - 347 s. (in Ukrainian)

42. Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig), 24 (1935) 636-664.

https://doi.org/10.1002/andp.19354160705

43. Peiponen K.-E., Makinen M. O., Saarinen J. J., Asakura T. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles. Optical Rewiev, 8(1) (2001) 9-17.

https://doi.org/10.1007/s10043-001-0009-5

44. Peiponen K.-E., Vartiainen E. M., Saarinen J. J., Makinen M. O. A. The dispersion theory of optically linear and nonlinear Bruggeman liquids. Optics communications, 205 (2002) 17-24.

https://doi.org/10.1016/S0030-4018(02)01323-8

45. Nagel T., Ehrentreich-Forster E., Singh M., Schmitt K., Brandenburg A., Berka A., Bier F. F. Direct detection of tuberculosis infection in blood serum using three optical label-free approaches. Sensors and Actuators, B 129 (2008) 934-940.

https://doi.org/10.1016/j.snb.2007.10.009

46. John G. Quinn, Richard O'Kennedy, Malcolm Smyth, John Moulds, Tom Frame Detection of blood group antigens utilising immobilized antibodies and surface plasmon resonance. Journal of Immunological Methods, 206 (1997) 87-96.

https://doi.org/10.1016/S0022-1759(97)00092-6

47. Hansson K. M., Vikinge T. P., Ranby M., Tengvall P., Lundstrom I., Johansen K., Lindahl T. L. Surface plasmon resonance (SPR) analysis of coagulation in whole blood with application in prothrombin time assay. Biosensors & Bioelectronics, 14 (1999) 671-682.

https://doi.org/10.1016/S0956-5663(99)00050-0

48. Geer C. B., Rus I. A., Lord S. T., Schoenfisch M. H. Surface-dependent fibrinopeptide A accessibility to thrombin. Acta Biomaterialia, 3 (2007) 663-668.

https://doi.org/10.1016/j.actbio.2007.03.004

49. Rysava J., Dyr J. E., Homol J., Dostalek J., Krızova P., Masova L., Suttnar J., Briestensky J., Santar I., Myska K., Pecka M. Surface interactions of oxidized cellulose with fibrin(ogen) and blood platelets. Sensors and Actuators, B. 90 (2003) 243-249.

https://doi.org/10.1016/S0925-4005(03)00035-2

50. Robelek R. Surface plasmon resonance sensors in cell biology: basics and application. Bioanalytical reviews, V.1, No.1 (2010) 57-72.

https://doi.org/10.1007/s12566-009-0005-y

51. Li H., Measurement method of the refractive index of biotissue by total internal reflection. Applied Optics, V. 35, No.10 (1996) 1793-1795.

https://doi.org/10.1364/AO.35.001793

52. Li H., Lin L., Xie S. Refractive index of human whole blood with different types in the visible and near-infrared ranges. Proceedings of SPIE, 3914 (2000) 517-521.

https://doi.org/10.1117/12.388073

53. Geake J. E., Mill C. S, Mohammadi M. S.A linear differentiating refractometer. Meas.Sci.Technol, 5 (1994) 531-539.

https://doi.org/10.1088/0957-0233/5/5/011

54. Grassi J. H., Georgiadis R. M. Temperature-Dependent Refractive Index Determination from Critical Angle Measurements: Implications for Quantitative SPR Sensing. Anal. Chem., 71 (1999) 4392-4396.

https://doi.org/10.1021/ac990125q

55. Gridina N., Dorozinsky G., Khristosenko R., Maslov V, Ushenin Yu., Shirshov Yu. Surface plasmon resonance biosensor. Sensors and Transducers, 149, №2 (2013) 60-68.

56. Manojlov E. G., Kravchenko S. A., Snopok B. A. Metodologiya obektno-orientirovannogo modelirovaniya processov adsorbcii: osobennosti dinamiki formirovaniya i prostranstvennoj samoorganizacii poverhnostnyh struktur. Optoelektronika i poluprovodnikovaya tehnika, V.51 (2016) 135-142. (in Russian)


К.В. Костюкевич, Ю.М. Ширшов, Р.В. Христосенко, А.В. Самойлов, Ю.В. Ушенин, С.А. Костюкевич, А.А. Коптюх

ОСОБЕННОСТИ УГЛОВОГО СПЕКТРА ПОВЕРХНОСТНОГО ПЛАЗМОН-ПОЛЯРИТОННОГО РЕЗОНАНСА В ГЕОМЕТРИИ КРЕТЧМАНА ПРИ ИССЛЕДОВАНИИ ЛАТЕКСНОЙ ВОДНОЙ СУСПЕНЗИИ

Предложен подход для описания угловой зависимости внутреннего отражения света R (F) при контакте плоской поверхности с мутной средой в рамках метода поверхностного плазмонного резонанса (ППР). Модель учитывает поверхностный избыток частиц за счет седиментации и наличие приповерхностной области с непрерывным изменением показателя преломления по направлению от поверхности в объем суспензии. Приповерхностная область задается набором тонких слоев, с характерной толщиной и показателем преломления для каждого, которые рассчитываются на основе теории эффективной среды Бруггемана. Для модельной системы «стекло – пленка золота – взвесь рассеивающих частиц» рассчитаны значения углов полного внутреннего отражения (ПВО) – FПВО и ППР – FППР, показана их однозначная связь с концентрацией и размером сферических частиц, а также возможность контроля поверхностного избытка частиц. Продемонстрировано, что результаты расчета согласуются с экспериментом при исследовании водных суспензий полистироловых сфер размером 200 нм и 920 нм.

Ключевые слова: поверхностный плазмонный резонанс, эффективная среда, суспензия, полистироловые сферы, седиментация.