https://doi.org/10.15407/iopt.2023.58.063
Optoelectron. Semicond. Tech. 58, 63-91 (2023)
M.V. Popovych, A.V. Stronski, L.O. Revutska
CHALCOGENIDE GLASSES: STRUCTURAL AND OPTICAL PROPERTIES
Structural properties of chalcogenide glasses mainly on the example of binary As-S(Se) and Ge-S(Se) systems
and ternary Ge-As-S(Se) systems, structural models, parameters of short range order of glasses obtained using
diffraction methods, EXAFS and Raman spectroscopy are considered. Raman spectra of binary As-S(Se) and Ge-S(Se)
systems and ternary Ge-As-S(Se) systems, structural models that are used for interpretation of Raman spectroscopy
results are considered. Optical properties of chalcogenide glasses and optical absorption edge in binary and
multicomponent systems are discussed. The refractive index and its wavelength dependence, other optical properties are
among important parameters that determine the suitability of materials as optical media. Refractive and absorption
indexes, optical band gap of chalcogenide glasses can be changed by doping of different elements. The results suggest a
combined effect of chemical ordering and topological in such glasses (parameters dependence on average coordination
number, composition, nanophase separation, etc.). Importance of study of interrelation of structural and physico-
chemical properties is stated. As frequently pointed out by various researchers, chalcogenide glasses are promising
materials for various applications because they are transparent over a wide range of wavelengths in the infrared region,
they possess high linear and non-linear refractive indices, number of photoinduced effects, low phonon energies and are
easy to fabricate. Applications of chalcogenide glasses cover wide range, among them: IR optics, recording and storage
of information, xerography, thermoplastic and holographic media, inorganic resists, optical filters, diffraction optical
elements, non-linear elements, fiber and integrated optics, etc. Composition-structure-properties correlations are
convenient to tailor the physical, optical and other properties of chalcogenide glasses and provide an important
reference for the further development of new chalcogenide glasses taking into account their possible applications.
Keywords: chalcogenide glasses, structural properties, optical properties, photonics applications
References
1. Stronskyi O.V., Venher Ye. F., Oleksenko P. F. ta Melnychuk O. V. Khalkohenidni sklopodibni
napivprovidnyky: vlastyvosti ta praktychni zastosuvannia. NDU im. M.Hoholia, Nizhyn. 2016.236 s.
2. Kirkinskiy V.M., Ryaposov A.P., Yakushev V.G. Fazovaya diagramma trisulfida myshiaka do davleniya 20
kbar. Izv. AN SSSR. Ser. Neorg. Materialy.1967. 3. №10. S. 1931 – 1932.
3. Morimoto N. The crystal structure of orpiment (As 2 S 3 ) refined. Mineralogical Journal (Japan).1954.1, № 3.P.
160.
4. Khansen M., Anderko K. Struktury binarnykh splavov. M.: Metalurgizdat. 1962. 1. 608 s.
5. White R.M. Random network model for amorphous alloys. J. Non-Cryst. Solids. 1974.16, №3. P. 387 – 398.
6. Felts A. Amorfnye i stekloobraznye neorganicheskiye tverdye tela. Mir. Moskva. 1986. 556 s.
7. Vaipolin A. A. and Porai-Koshits E. A. Structural models of glasses and the structures of crystalline
chalcogenides. Sov. Phys.-Solid State.1963. 5. Р. 797.
8. Borisova Z. U. Khalkogenidnye poluprovodnikovye stekla. Izd-vo Leningradskogo un-ta. Leningrad. 1983.344
s.
9. Stronski A. V., Vlček M., and Oleksenko P. F. Fourier Raman spectroscopy studies of the As 40 S 60-x Se x glasses.
Semicond. Phys. Quantum Electr.Optoelectron. 2001. 4, №. 3. Р. 210–213.
10. Iovu M. S., Kamitsos E. I., Varsamis C. P. E., Boolchand P., and Popescu M. Raman spectra of As x Se 100-x and
As 40 Se 60 glasses doped with metals. Chalcogenide Lett. 2005.2, № 4. Р. 21–26.
11. Rowland S.C., Narasimhan S., Bienenstock A. Radial Distribution Studies of Glassy Ge x S 1−x Alloys J. Appl.
Phys. 1972. 43, №6. Р.2741. https://doi.org/ 10.1063/1.1661587 .
12. Petri I.A. and Salmon P. S. A neutron diffraction study of glassy GeS 2 . J. Non-Cryst. Solids.2001. 169. Р.293-
295. https://doi.org / 10.1016/S0022-3093(01)00667-6 .
13. Petri I. and Salmon P. S. Defects in a Disordered World: The Structure of Glassy GeSe 2. Phys. Rev. Lett. 2000.
84, №11. Р.2413. https://doi.org/10.1103/PhysRevLett.84.2413 .
14. Ramesh Rao N., Krishna P. S. R., Basu S., et al. Structural correlations in Ge x Se 1−x glasses – a neutron diffraction
study . J. Non-Cryst. Solids. 1998.240, №1-3. Р.221-23. https://doi.org/10.1016/S0022-3093(98)00705-4 .
15. Blaineau S., Jund P., Drabold D., Physical properties of a GeS 2 glass using approximate ab initio molecular
dynamics. Phys. Rev. 2003. B.67. Р. 094204. https://doi.org/10.1103/PhysRevB.67.094204 .
16. Kevshyn A.H. Osoblyvosti struktury khalkohenidnykh stekol na bazi GeX 2 (X = S, Se). Fizyka i khimiia
tverdoho tila. 2014. 15, №4. S. 682-688.
17. Marinova S.A., Basalaеv Ju.M. Aktual'nye problemy fiziki tverdogo tela. 2013. Kovcheg, Minsk.
18. Sherman Susman, Kenneth J. Volin, Daniel G. Montague and David L. Price. The study of vitreous and liquid
GeSe 2 : a neutron diffraction study. J. Non-Cryst. Solids. 1990. 125, №1-2. Р.168. https://doi.org/10.1016/0022-
3093(90)90336-K .
19. Pohle M., Feltz A., Steil H., Herms G. Glass formation and properties of chalcogenide systems XXXII. RDF
studies on the structure of vitreous Ge 2 S 3 and Ge 2 Se 3 .J. Non-Cryst. Solids. 1985.69. №2-3. Р.283.
https://doi.org/10.1016/0022-3093(85)90030-4 .
20. Petkov V., Quadir D., Shastri S.D. Rapid structure determination in disordered materials: study of GeSe 2 glass.
Solid State Commun. 2004. 129, №4. Р.239. https://doi.org 10.1016/J.SSC.2003.10.007 .
21. Hosokawa S., Wang Y., Bérar J.-F., et al. Anomalous X-ray scattering studies on glassy Ge x Se 1−x over a wide
concentration range including the stiffness transition composition . J. Non-Cryst. Solids. 2003. 394. Р.326-327.
22. Moharram A. H. Short-range order of germanium selenide glass. Bull. Mater. Sci. February 2015.38, № 1.
Р.111–117.
23. Revutska L.O. et. al. XRD and Raman studies of structural peculiarities of chalcogenide glasses, in Conference:
«Nanotechnology and nanomaterials» (NANO-2019). 2019. Lviv, Ukraine. Р. 120.
24. Holomb R. M. and Mitsa V. M. Simulation of Raman spectra of As x S 100-x glasses by the results of ab initio
calculations of As n S m clusters vibrations. J. Optoelectron. Adv. Mater. 2004. 6, №. 4. Р. 1177–1184.
25. Kaban I. et. al. Atomic structure of As 2 S 3 –Ag chalcogenide glasses. J. Phys. Condens. Matter. 2009. 395801. Р.
1–8.
26. Soyer-Uzun S., Sen S., and Aitken B. G. Network vs Molecular Structural Characteristics of Ge-Doped Arsenic
Sulfide Glasses: A Combined Neutron / X-ray Diffraction, Extended X-ray Absorption Fine Structure, and
Raman Spectroscopic Study. J. Phys. Chem. C. 2009. №113.Р. 6231–6242.
27. A. Stronski, T. Kavetskyy, L. Revutska, K. Shportko, M. Popovych, I. Kaban, P. Jóvári. Structural order in
(As 2 S 3 ) x (GeS 2 ) 1-x glasses. J.Non-Cryst.Solids.2021. Р.121075. https://doi.org/10.1016/j.jnoncrysol.2021.121.075 .
28. A. Stronski, T. Kavetskyy, L. Revutska, I. Kaban, P. Jóvári, K. Shportko, V. Sergienko, M. Popovych. The
boson peak and the first sharp diffraction peak in (As 2 S 3 ) x (GeS 2 ) 1-x glasses Semiconductor Physics. Quantum &
Optoelectronics. 2021. 24, №. 3. P.312-318. https://doi.org/10.15407/spqeo24.03.312 .
29. Kaban I., Jóvári P., Wang, R. P., Luther-Davies B., Mattern, N., Eckert J. Structural Investigations of
Ge 5 As x Se 95‑x and Ge 15 As x Se 85‑x Glasses Using X-Ray Diffraction and Extended X-Ray Fine Structure
Spectroscopy. J. Phys.: Condens. Matter.2012. 24, № 385802.
30. Pethes I. Kaban I., Wang, R. P., Luther-Davies B., Jóvári P. Short Range Order in Ge−As−Se Glasses. J. Alloys
Compd. 2015.623, 454−459.
31. Pethes I. Short range order in Ge–As–Se glasses. Journal of Alloys and Compounds. 2015.623:454-459.
https://doi.org/10.1016/j.jallcom.2014.11.002 .
32. P. J. Webber, and J. A. Savage. Some physical properties of Ge-As-Se infrared optical glasses. J. Non-Cryst.
Solids. 1976.20. Р.271-283.
33. Popovych M.V., Stronski A.V., Revutska L.O., Shportko K.V., Polishchuk Y., Paiuk O.P., Goroneskul V.Yu.
Structural investigation of Ge-As-Se glasses. Journal of Optoelectronics and Advanced Materials. January-
February 2023. 25, №1-2. P.49-55.
34. Brandmyuler I., Mozer. G. Vvedeniye v spektroskopiyu kombinatsionnogo rasseyaniya. M.: Mir. 1964. 628 s.
35. Mitsa V.M. Kolebatelnye spektry i strukturnye korrelyatsii v bezkislorodnykh stekloobraznykh splavakh. Kiyev:
UMK VO. 1992. 56 s.
36. Shuker R., Gammon R.W. Raman-scattering selection-rule breaking and the density of states in amorphous
materials. Phys. Rev. Lett.1970. 25, № 4. P. 222 – 225.
37. Lucovsky G. Amorphous and Liquid Semiconductors, eds. J. Stuke, W. Brenig. Taylor and Francis, London.
1974. Р. 1009.
38. Amorfnye poluprovodniki: Per. s angl. Pod red. M. Brodski. M.: Mir. 1962. 419 s. s. 285.
39. Klark T. Kompyuternaya khimiya. Per. s angl. M.: Mir.1990. 381 s.
40. Sleter Dzh. Metody samosoglasovannogo polya dlya molekul i tverdykh tel. Per. s angl. M.: Mir. 1978. 664 s.
41. Dyuar M. Teoriya molekulyarnykh orbitaley v organicheskoy khimii. Per. s angl. M.: Mir. 1972. 592 s.
42. Wagner T., Kasap S.O., Vlček M., Sklenař A., Stronski A.V. The structure of As x S 100-x glasses studied by
modulated temperature differential scanning calorimetry and Raman spectroscopy. J.Non.Cryst.Solids.1998.
227-230. P.752-756.
43. Wagner T., Kasap S.O., Vlček M., Sklenař A., Stronski A.V. Тemperature-modulated differential scanning
calorimetry and raman spectroscopy studies of As x S 100-x glasses. Journal of Material Science.1998. 33, № 23.
P.5581-5588.
44. Stronski A., Vlček M., Sklenař A. Photoinduced structural changes in As 100-x S x layers. Semiconductor Physics,
Quantum Electronics & Optoelectronics. 2000. 3, №3. P. 394-399.
45. Brodskiy M.Kh. Kombinatsionnoe rasseyaniye sveta v amorfnykh poluprovodnikakh. v kn.“Rasseyaniye sveta v
tverdykh telakh” /Pod red. M.Kardony. M.: Mir. 1979. S. 239-289.
46. Iovu M. S., Kamitsos E. I., Varsamis C. P. E., Boolchand P., Popescu M. Raman spectra of As x Se 100-x and
As 40 Se 60 glasses doped with metals. Chalcogenide Letters. April 2005. 2, №. 4. Р. 21 – 26.
47. Kovanda V., Vlcek Mir., Jain H., Structure of As-Se and As-P-Se Glasses Studied by Raman Spectroscopy. J. of
Non-Cryst. Solids. 2003. 326&327. Р. 88-92. http://dx.doi.org/10.1016/S0022-3093(03)00383-1 .
48. Mikla V. I. Distinct topological regimes in binary AsxSe1-x glasses. J. Phys.Condens. Matter.1997. 9, №43.
Р.9209. http://dx.doi.org/10.1088/0953-8984/9/43/007.
49. Popescu M., Andriesh A., Chiumach V., Iovu M., Shutov S., Tsiuleanu D. The Physics of Chalcogenide Glasses.
Ed. Stiintifica Bucharest - I. E. P. Stiinta (roum.), Chisinau. 1996.487 p.
50. Liuchun Cai and Boolchand P. Nanoscale phase separation of GeS 2 glass. Philosophical Magazine B. 2002. 82,
№. 15.Р1649-1657.
51. Feng X., Bresser W.J. and Boolchand P., Direct Evidence for stiffness thereshold in chalcogenide glasses.
Phys.Rev.Lett. 1997. 78. Р.4422. https://doi.org/10.1103/PhysRevLett.78.4422.
52. Moharram A.H. Short-range order of germanium selenide glass. Bull. Mater. Sci. February 2015. 38, № 1. Р.
111–117.
53. Revutska L., Shportko K., Stronski A., and Baran J. Raman Spectroscopy Studies of Ge-As-S Chalcogenide
Glasses, in Conference: 2017. IEEE 7th International conference on nanomaterials: applications & properties,
Zatoka, Ukraine. 2017. doi: 10.1109/NAP.2017.8190387.
54. Wagner T. Photo- and thermally-induced diffusion and dissolution of Ag in chalcogenide glasses thin films. J.
Optoelectron. Adv. Mater. 2002.4, № 3. Р. 717–727.
55. Stronski A. V., Vlček M., Tolmachov I. D., and Pribylova H. Optical characterization of As-Ge-S thin films. J.
Optoelectron. Adv. Mater. 2009. 11, № 11. Р. 1581–1585.
56. Mamedov S., Georgiev D. G., Qu T., and Boolchand P. Evidence for nanoscale phase separation of stressed –
rigid glasses. J. Phys. Condens. Matter. 2003. 15. Р. 2397–2411.
57. Takebe H., Maeda H., and Morinaga K. Compositional variation in the structure of Ge-S glasses. J. Non-Cryst.
Solids. 2001. 291. Р. 14–24.
58. Kotsalas P. and Raptis C. Structural Raman Studies of Ge x S 1-x Chalcogenide Glasses. J. Adv. Mater. 2001. 3, №
3. Р. 675–684.
59. Messaddeq S. H., Boily O., Santagneli S. H., El-Amraoui M., and Messaddeq Y. As 4 S 4 role on the photoinduced
birefringence of silver-doped chalcogenide thin films. Opt. Mater. 2016. 6, № 5. Р. 1452–1463. https://doi.org/
10.1364/OME.6.001451.
60. Boulmetis Y. C., Perakis A., Raptis C., Arsova D., and Vateva E. Composition and temperature dependence of
the low-frequency Raman scattering in Ge–As–S glasses. J. Non-Cryst. Solids. 2004. 347.Р. 187–196.
https://doi.org/ 10.1016/j.jnoncrysol.2004.06.032.
61. Shportko K. et al. Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-
Te chalcogenide alloys studied by Raman spectroscopy. Opt. Mater. 2017. 73. Р. 489–496. https://doi.org/
10.1016/j.optmat.2017.08.042.
62. Mateleshko N., Mitsa V., Veres M., Koos M., and Stronski A. Investigation of nanophase separation in IR
optical glasses As 40 Se 60 using resonant Raman scattering. Semicond. Phys. Quantum Electron. Optoelectron.
2004. 7, № 2. Р.171–174.
63. Zha C., Wang R., Smith A., Prasad A., and Jarvis R. A. Optical properties and structural correlations of GeAsSe
chalcogenide glasses. J. Mater. Sci. Mater.Electron. 2007. 18. Р. 389–392. https://doi.org/ 10.1007/s10854-007-
9235-3.
64. Nagels, R. Callaerts, and R. Mertens. Plasma-enhanced chemical vapour deposition and structural
characterization of amorphous chalcogenide films. J. Phys. 1999. 9, № 8. Р. 717–724.
65. Orava J. et al. Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films. J. Non-Cryst.
Solids. 2009.355, №37–42. Р. 1951–1954.
66. Mitsa V., Feher O., Holomb R., Tkach V., Ivinda M., Mitsa O., Petretskyi S., Fekeshhazi I. Vzaiemozviazok
nyzkotemperaturnykh anomalii teploprovidnosti ta nyzkochastotnykh Raman spektriv shyrokozonnykh
khalkohenidnykh stekol dlia optychnykh pokryttiv sylovoi optyky. Monohrafiia: Vyd-vo «Rik», Uzhhorod.
2019.152 s.
67. Yamane M., Asahara Y. Glasses for photonics. University Press. Cambridge. 2000.271 рр.
68. Klocek P. ed. Handbook of infrared optical materials. Marcel Dekker. New York. 1991.632 рр.
69. Savage J.A. Optical-Properties of Chalcogenide Glasses. J. Non-Cryst. Solids. 1982. 47. P. 101 – 116.
70. Sanghera J. S., Shaw L. B., Busse L. E., Nguyen V. Q., Pureza P. C., Cole B. C., Harbison B. B., Aggarwal I. D.,
Mossadegh R., Kung F., Talley D., Roselle D., and Miklos R. Development and infrared applications of
chalcogenide glass optical fibers. Fiber Integr. Opt. 2000. 19. P. 251 – 274.
71. Seddon A.B. Chalcogenide Glasses – a Review of Their Preparation, Properties and Applications. J. Non-Cryst.
Solids.1995. 184. P. 44 – 50.
72. Vahid G. Ta’eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R.E. Lamont, David J. Moss, Hong C.
Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden and Barry Luther-Davie. Ultrafast all-optical
chalcogenide glass photonic circuits. 2007. 15, № 15. OPTICS EXPRESS. Р. 9205-9221.
73 Kavetskyy T., Golovchak R., Shpotyuk O., Filipecki J., Swiatek J. On the compositional trends in IR impurity
absorption of Ge–As(Sb)–S glasses. Journal of Optoelectronics and Advanced Materials. 2004. 6, № 4.P. 1141
– 1146.
74. Popescu M., Andriesh A., Ciumash V., Iovu M., Tsiuleanu D., Shutov S. Physics of chalcogenide glasses. I.E.P.
Stiinta Press Chisinau- Editura Stiintifica Bucuresti.1996.487 pр.
75. Andriesh A.M., Iovu M.S. Optical Properties оf Chalcogenide Glasses. Moldavian Journal of the Physical
Sciences. 2003. 2, № 3-4. P. 246 –285.
76. Kosek F., Tauc J. Absorption edge of amorphous As 2 S 3 . Czech. J.Physics. 1970. B20. Р. 94-100.
77. Zorina E.L. Light absorption in vitreous As 2 S 3 and As 2 S 5 on the fundamental absorption edge. Solid state physics.
1965.7. Р.331-332.
78. Tauc J. Optical properties of amorphous semiconductors. In Amorphous and Liquid Semiconductors (J.Tauc,
ed.). Plenum Press, New York. 1974. Р.159-220.
79. Tauc J., Abraham A., Pajasova L., Grigorovici R., Vancu A. Optical properties of non-crystalline
semiconductors. In Proc. Intern. Conf. on Optical Properties of Non-Crystalline Semiconductors. Delft, North-
Holland Publish.Company, Amsterdam. 1974. Р.606-615.
80. Zakis I.R., Fritzshe H. Temperature dependence of the absorption edge in crystalline and vitreous As 2 S 3 . Phys.
Stat. Solidi (b). 1974. 64. P. 123 – 130.
81. Urbach F. Phys. Rev.1953. 92. P. 1324.
82. Wood D.L., Tauc J. Week absorption tails in amorphous semiconductors. Phys. Rev. B.5. 1972. P. 3144 – 3151.
83. Shimakawa K. On the compositional dependence of the optical gap in amorphous semiconducting alloys. J. Non-
Cryst. Solids. 1981. 43. Р. 229 – 244.
84. Tichy L., Triska A., Frumar M., Ticha H., Klikorka J. Compositional dependence of the optical gap in Ge 1-x S x ,
Ge 40-x Sb x S 60 and (As 2 S 3 ) x (Sb 2 S 3 ) 1-x non-crystalline systems. J. Non-Cryst. Solids. 1982. 50. Р.371-378.
85. Yamaguchi M. The Relationship between optical gap and chemical composition in chalcogenide glasses. Phil.
Mag. B. 1985. 51.Р. 651-663.
86. Andriesh A.M., Tsiuleanu D.I., Absorption edge investigation of vitreous materials of As 2 S 3 -Ge system. Soviet
Physics: Semiconductors. 1973. 7. Р.417-420.
87. Andriesh A.M., Tsiuleanu D.I. Influence of annealing and temperature on the absorption edge of As 2 S 3 -Ge
amorphous films.Phys. Stat. Sol.(a). 1973.19.Р. 307-312.
88. Andriesh A.M., Shutov S.D., Tsiuleanu D.I., Iovu M.S. Influence of temperature on the edge absorption and
photoconductivity of As 2 S 3 -Ge amorphous semiconductor system. Proceedings of the International Conference
on Amorphous Semiconductors, GDR, Reingardsbrunn. Nov. 11-15 1974. Р.310-313.
89. Kosek F., Cimpl Z., Chlebny J. Optical and magnetic properties of As-S-Tl and As-Se-Te systems. In Proc.of the
Int. Conf. Amorphous Semiconductors’76”, Balatonfured, 1976, (I. Kosa-Somogyi, ed.). Akademiai Kiado,
Budapest. 1977. Р. 277-280.
90. Y. Yang, Z.Y. Yang, P. Lucas, Y.W. Wang, Z.J. Yang, A.P. Yang, B. Zhang, H.Z. Tao. Composition
dependence of physical and optical properties in Ge-As-S chalcogenide glasses. J. Non Cryst. Solids. 2016.440.
Р.38–42. https://doi.org/10.1016/j.jnoncrysol.2016.03.003 .
91. Shengjie Ding, Shixun Dai, Zhenfei Cao, Chengcheng Liu, Jinghui Wu. Composition dependen-ce of the
physical and acousto-optic properties of transparent Ge–As–S chalcogenide glasses. Optical Materials . October
2020. 108 . Р.110175. https://doi.org/10.1016/j.optmat.2020.110175 .
92. Wagner T. Kasap S.O. , Petkov K. Temperature-modulated differential scanning calorimetry studiesof the
structure of bulk and film Ge x As y S 60 chalcogenide glasses. Journal of Materials Science . 1997. 32, Issue 22. P.
5889 – 5893. https://doi.org/ 10.1023/A:1018698524277.
93. Keiji Tanaka . Maximal Photodarkening in the Ge–As–S Glass. System PSS (b). 28 May 2021. 258, Issue 8 . Р.
2100180. https://doi.org/10.1002/pssb.202100180 .
94. Laurent Calvez, Zhiyong Yang, and Pierre Lucas. Light-Induced Matrix Softening of Ge-As-Se Network
Glasses. Phys. Rev. Lett. 22 October 2008. 101. Р.177402. https://doi.org/10.1103/PhysRevLett.101.177402.
95. M. Ghayebloo, M. Rezvani M. The relationship between structural and optical properties of Se-Ge-As glasses.
Tavoosi Infrared Physics & Technology . 90 . May 2018. P. 40-47. https://doi.org/10.1016/j.infrared.2018.02.004 .
96. Nicholas J., Tostanoski, Edwin J., Heilweil, Peter F., Wachtel, J., David Musgraves, S. K. Sundaram. Structure-
terahertz property relationship and femtosecond laser irradiation effects in chalcogenide glasses. Journal of Non-
Crystalline Solids . 15 January 2023. 600 . Р.122020. https://doi.org/10.1016/j.jnoncrysol.2022.122020 .
97. Stronski A. V, Vlček M., Sklenar A., Shepeljavi P. E., and Kostyukevich S. A. Application of As 40 S 60-x Se x layers
for high-effciency grating production. J. NonCryst. Solids. 2000. 266–269. Р. 973–978.doi: 10.1016/S0022-
3093(00)00032-6.
98. Sundaram S. K. et. al. Chalcogenide glasses and structures for quantum sensing. Quantum Sens. Nanophotonic
Devices. 2004. 5359. Р. 234–245.
99. Reinfelde M., Teteris J., and Kuzmina I. Amorphous As-S-Se films for holographic recording. Іn SPIE:
Advanced Optical Devices, Technologies, and Medical Applications. 2003. Р. 125–132.
100. Popescu M. Disordered chalcogenide optoelectronic materials: phenomena and applications. J. Optoelectron.
Adv. Mater. 2005. 7, № 4. Р. 2189–2210.
101. Lezal D., Pedlikova J., Zavadil J. Chalcogenide glasses for optical and photonics applications. J. Optoelectron.
Adv. Mater. 2004. 6, №1. Р. 133-137.
102. Venger E.F., Melnichuk A.V., Stronskiy A.V. Fotostimulirovannye protsessy v khalkogenidnykh
stekloobraznykh poluprovodnikakh i ikh prakticheskoe primeneniye. K.: Akademperiodika. 2007. 284 s.
103. Tolmachev I.D., Stronskiy A.V. Primeneniye khalkogenidnykh stekloobraznykh poluprovodnikov v sensorakh i
sensornykh sistemakh. Optoelektronika i Poluprovodnikovaya Tekhnika. 2009. 44. S.5-22.
104. Miyashita T. and Terunuma Y. Optical transmission loss of As-S glass fiber in 1.0–5.5 µm wavelength region.
Jpn. J. Appl. Phys. 1982. 21, L75-L76. https://doi.org 10.1143/JJAP.21.L75 .
105. Shibata S., Terunuma Y., and Manabe T. Sulfide glass fibers for infrared transmission. Mater. Res. Bull. 1981.
16, Р.703. https://doi.org 10.1016/0025-5408(81)90271-3 .
106. Katsuyama T., Ishida K., Satoh S., and Matsumura H. Low loss Ge-Se chalcogenide glass optical fibers . Appl.
Phys. Lett. 1984. 45, №9. Р.925-927.
107. Katsuyama T. and Matsumura H. Infrared Optical Fibers (Adam Hilger, Bristol, 1989), Katsuyama T. and
Matsumura H. J. Appl. Phys. 1994. 75, Р.2743.
108. Katsuyama T., Satoh S., and Matsumura H. Scattering loss characteristics of selenide-based chalcogenide glass
optical fibers . J. Appl. Phys. 1992. 71, №9. Р. 4132-4135.
109. Xiaolin Liang, Kai Jiao, Xiange Wang, Nian Si, Tiesong Xu, Minghui Zhong, Zheming Zhao, Xunsi Wang, Jia
Liu, Peiqing Zhang, Yongxing Liu, Qiuhua Nie, Rongping Wang.Ultra-high germanium-contained Se-
chalcogenide glass fiber for mid-infrared. Infrared Physics & Technology . January 2020. 104 . Р.103112
https://doi.org/10.1016/j.infrared.2019.103112 .
110. Zhaoxiang Qiu, Shixun Dai, Chengcheng Liu, Wei Wu, Zenghua Xu, Yingying Wang, Yue Fu. Novel Ge-As-Se
chalcogenide glass for potential high Brillouin gain coefficient of fiber. Ceramics International . 15 May 2023.
49, Issue 10 . P. 16433-16439. https://doi.org/10.1016/j.ceramint.2023.02.004 .
111. Zakery A. and Elliott S. R. Optical Nonlinearities in Chalcogenide Glasses and their Applications. Springer-
Verlag Berlin Heidelberg, 2007.201 рр.
112. Tolmachev I.D. and Stronskiy A.V. Opticheskiye nelineynosti v khalkogenidnykh stekloobraznykh transmemory
devices. 2007. J. Appl. Phys. 102. doi: https://doi.org/10.1063/1.2773688 .
113. B.I. Lembrikov. Nonlinear Optics - Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics. 2022.
https://doi.org/: 10.5772/intechopen.101774 ; Cristina Vasconcelos H (2022) Optical Nonlinearities in Glasses.
Nonlinear Optics - Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics. IntechOpen.
https://doi.org/ 10.5772/intechopen.101774 .
114. Ielminia D. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based
memory devices. 2007. J. Appl. Phys. 102. doi: https://doi.org/10.1063/1.2773688 .
115. Pirovano A., Lacaita A., Benvenuti A., Pellizzer F., and Bez R. Electronic switching in phase-change memories.
IEEE Trans. Electron Devices. 2004. 51, № 3.Р. 452–459.
116. Kolobov A. V. and Tominaga J. Chalcogenide glasses as prospective materials for optical memories and optical
data storage. J. Mater. Sci. Mater. Electron. 2003. 14. Р.677–680. doi:
https://doi.org/10.1023/A:1026166701612 .
117. Malinovsky V. K. and Surovtsev N. V. Optical memory in chalcogenide glasses. Chalcogenide Lett. 2012. 9, №
2. Р. 79–84.
118. Thorpe M.F., Jacobs D.J., and Djordjević B.R. Іn Insul. Semicond. Glas., edited by P. Boolchand (World
Scientific, 2000). Р. 95–145.
119. Tanaka K., Structural phase transitions in chalcogenide glasses. Phys. Rev. 1989. B 39.
Р.1270.https://doi.org/10.1103/PhysRevB.39.1270.
120. Liang Zhu, Dandan Yang, Leilei Wang, Jianghui Zeng, Qian Zhang, Min Xie, Peiqing Zhang, Shixun Dai.
Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing. Optical Materials .
November 2018. 85 . Р.220-225. https://doi.org/10.1016/j.optmat.2018.08.041 .
121. Kolobov A. V and Tominaga J. Chalcogenide glasses as prospective materials for optical memories and optical
data storage. J. Mater. Sci. Mater. Electron. 2003. 14. Р. 677–680. https://doi.org/10.1023/A:1026166701612 .
122. Loke D., Skelton J. M., Wang W.-J., Lee T.-H., Zhao R., Chong, T.-C., Elliott S.R. Ultrafast Phase-Change
Logic Device Driven by Melting Processes.Proc. Natl. Acad. Sci. U. S. A. 2014. 111, №37. Р.13272–13277.
https://doi.org/ 10.1073/pnas.1407633111.
123. Stronski A.V. Production of metallic patterns with the help of highresolution inorganic resists. In: Harman G.,
Mach P. (eds). Microelectronic Interconnections and Assembly. NATO ASI Series. 1998. 54. Springer,
Dordrecht. https://doi.org/10.1007/978-94-011-5135-1_31 .
124. Kohoutek T. et. al. Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface
morphology of spin-coated amorphous films. J. Appl. Phys. 2008.103, № 063511.
125. Kovalenko M. V., Schaller R. D., Jarzab D., Loi M. A., and Talapin D. V. Inorganically Functionalized
PbS−CdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties.
J. Am. Chem. Soc. 2012. 134. Р. 2457–2460.
126. Indutnyi I., Stronski A., and Kostioukevitch S. et.al. Holographic optical element fabrication using chalcogenide
layers. Opt. Eng. 1995. 34, № 4. Р. 1030–1038. https://doi.org/ 10.1117/12.197144 .
127. Stronski A.V. and Vlček M. Imaging properties of As 40 S 40 Se 20 layers. OptoElectron. Rev. 2000. 8, № 3. Р.
263–267.
128. Stronski A. V., Vlček M., Kostyukevych S. A., Tomchuk V. M., and Kostyukevych E. V. Study of non-
reversible photostructural transformations in As 40 S 60-x Se x layers applied for fabrication of holographic protective
elements. Semicond. Phys. Quantum Electron. Optoelectron. 2002. 5, № 3. Р. 284–287.
129. P. Kutálek, E. Samsonova, J. Smolík, P. Knotek, J. Schwarz, E. Černošková, P. Janíček, L. Tichý Microlenses
formation on surface of stoichiometric Ge-As-S bulk glasses by CW laser direct writing. Applied Surface
Science . 15 August 2023. 628 . Р.157380. https://doi.org/10.1016/j.apsusc.2023.157380 .
130. Kikineshi A. Light-stimulated structural transformations and optical recording in amorphous nano-layered
structures. J. Optoelectron. Adv. Mater. 2001. 3, №2. Р.377–382.
131. Achimova E. et al. Direct surface relief formation on As 2 S 3 -Se nanomultilayers in dependence on polarization
states of recording beams. Opt. Mater. 2015.47. Р.566- 572. https://doi.org/ 10.1016/j.optmat.2015.06.044 .
132. Tanaka K. Photoinduced deformations in chalcogenide glasses. Amorphous Chalcogenides:Advances and
Applications, Taylor&Fr., FL, USA. 2013.Р. 59 – 95.
133. Stronski A. et al. Surface relief formation in Ge 5 As 37 S 58 –Se nanomultilayers. J. Non-Cryst. Solids. 2015. 409.
Р.43–48. https://doi.org/ 10.1016/j.jnoncrysol.2014.11.010 .
134. Stronski A. et al. Holographic and e-beam image recording in Ge 5 As 37 S 58 –Se nanomultilayer structures.
Nanoscale Res. Lett. 2016. 11, №39. Р. 1–7. https://doi.org/ 10.1186/s11671-016-1235-x .
135. Achimova E. et al. Direct surface relief formation on As 2 S 3 -Se nanomultilayers in dependence on polarization
states of recording beams. Opt. Mater. 2015.47. Р.566- 572.
136. Stronski A. et al. Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their
application in holographic grating recording. Optical Materials . 2019. 94. P. 393-397.
https://doi.org/ 10.1016/j.optmat.2019.06.016 .
137. Stronski A. et al. Effect of doping by transitional elements on properties of chalcogenide glasses. Ceramics
International. 2015. 41. Р.7543-7548. https://doi.org/ 10.1016/j.ceramint.2015.02.077 .
138. Stronski A., Achimova E., Paiuk O., Meshalkin A., Prisakar A., Tridukh G., Oleksenko P., Lytvyn P. Direct
magnetic relief recording using As 40 S 60 :Mn-Se nanocomposite multilayer structures.
https://doi.org/10.1186/s11671-017-2060-6.
139. Andriesh A., Sergheev S., Triduh G., and Meshalkin A. Diffraction optical structures on the basis of
chalcogenide glasses and polymers. J. Optoelectron. Adv. Mater. 2007. 9, № 10. Р. 3007–3012.
140. Akimova E. A., Stronskiy A. V., Payuk A. P. i Meshalkin A. Zapis gologramnykh difraktsionnykh reshetok s
ispolzovaniyem karbazolsoderzhashchikh tonkikh polimernykh plenok. Optoelektron. i Poluprov. Tekhn. 2014.
49. S. 31–35.
141. O. Paiuk, A. Meshalkin, A. Stronski, E. Achimova, С. Losmanschii, V. Botnari, A. Korchovyi, M.Popovych.
Direct magnetic and surface relief patterning using carbazole-based azopolymer. Physics and chemistry of solid
state. 2023.24, №1. P.197-201. https://doi.org/10.15330/pcss.24.1.197-201 .
142. Grynko D., Stronski A., Telbiz G., Lytvin O., Paiuk O., Oleksenko P. Nanocomposites based on chalcogenide
glass semiconductor and metal phtalocyanine. Ceramics International. 2015. 41. P.7605-7610.
https://doi.org/ 10.1016/j.ceramint.2015.02.085 .
143. Kryshenik V. M., Azhniuk Y. M., Kovtunenko V. S. All-optical patterning in azobenzene polymers and
amorphous chalcogenides. Journal of Non-Crystalline Solids. 2019. 512. Р.112–131.
https://doi.org/10.1016/j.jnoncrysol.2019.02.019 .
М.В.Попович, О.В.Стронський, Л.О. Ревуцька
ХАЛЬКОГЕНІДНІ СТЕКЛА: СТРУКТУРНІ І ОПТИЧНІ ВЛАСТИВОСТІ (ОГЛЯД)
Розглянуто стан вивчення структури халькогенідних стекол (ХС) на прикладі бінарних систем As-S(Se),
Ge-S(Se) і потрійних систем Ge-As-S(Se) та структурні моделі, параметри ближнього порядку стекол з
використанням дифракційних методів та комбінаційного розсіювання світла (КР) в ХС. Розглянуто спектри КР
бінарних стекол систем As-S(Se), Ge-S(Se) та потрійних стекол складу Ge-As-S(Se) і структурні моделі, що
використовуються для інтерпретації результатів спектроскопії комбінаційного розсіювання. Обговорено
оптичні властивості халькогенідних стекол та край оптичного поглинання в бінарних халькогенідах і в
багатокомпонентних системах. Зазначено важливість вивчення фізико-хімічних властивостей стекол та їх
взаємозв’язку зі структурою ХС. Застосування халькогенідних стекол у практиці охоплюють широке коло,
серед яких: ІЧ- оптика, запис та зберігання інформації, ксерографічні, термопластичні і голографічні середовища,
фоторезисти, оптичні сенсори, оптичні фільтри, дифракційні оптичні елементи, нелінійні елементи,
тонкоплівкові хвилеводи тощо.
Ключові слова: халькогенідні стекла, структурні властивості, оптичні властивості.